Piecewise Linear and Boolean Models of Chemical Reaction Networks

被引:0
|
作者
Alan Veliz-Cuba
Ajit Kumar
Krešimir Josić
机构
[1] University of Houston,Department of Mathematics
[2] Rice University,Department of Biochemistry and Cell Biology
[3] Shiv Nadar Univerisity,Department of Mathematics
[4] University of Houston,Department of Biology and Biochemistry
来源
关键词
Piecewise linear models; Boolean models; Steady-state analysis; Biochemical networks; 92C42; 37N25; 94C10;
D O I
暂无
中图分类号
学科分类号
摘要
Models of biochemical networks are frequently complex and high-dimensional. Reduction methods that preserve important dynamical properties are therefore essential for their study. Interactions in biochemical networks are frequently modeled using Hill functions (xn/(Jn+xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n/(J^n+x^n)$$\end{document}). Reduced ODEs and Boolean approximations of such model networks have been studied extensively when the exponent n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is large. However, while the case of small constant J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document} appears in practice, it is not well understood. We provide a mathematical analysis of this limit and show that a reduction to a set of piecewise linear ODEs and Boolean networks can be mathematically justified. The piecewise linear systems have closed-form solutions that closely track those of the fully nonlinear model. The simpler, Boolean network can be used to study the qualitative behavior of the original system. We justify the reduction using geometric singular perturbation theory and compact convergence, and illustrate the results in network models of a toggle switch and an oscillator.
引用
收藏
页码:2945 / 2984
页数:39
相关论文
共 50 条
  • [21] Stability of linear Boolean networks
    Chandrasekhar, Karthik
    Kadelka, Claus
    Laubenbacher, Reinhard
    Murrugarra, David
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 451
  • [22] Linear cuts in Boolean networks
    Aurélien Naldi
    Adrien Richard
    Elisa Tonello
    Natural Computing, 2023, 22 : 431 - 451
  • [23] NONNEGATIVE LINEAR ELIMINATION FOR CHEMICAL REACTION NETWORKS
    Saez, Meritxell
    Wiuf, Carsten
    Feliu, Elisenda
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (06) : 2434 - 2455
  • [24] On the linear stability of some finite difference schemes for nonlinear reaction-diffusion models of chemical reaction networks
    Muyinda, Nathan
    De Baets, Bernard
    Rao, Shodhan
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (01) : 121 - 140
  • [25] From Boolean to probabilistic Boolean networks as models of genetic regulatory networks
    Shmulevich, I
    Dougherty, ER
    Mang, W
    PROCEEDINGS OF THE IEEE, 2002, 90 (11) : 1778 - 1792
  • [26] Thermodynamic analysis of reaction-distillation processes based on piecewise linear models
    Ryll, O.
    Blagov, S.
    Hasse, H.
    CHEMICAL ENGINEERING SCIENCE, 2014, 109 : 284 - 295
  • [27] Qualitative simulation of genetic regulatory networks using piecewise-linear models
    De Jong, H
    Gouzé, JL
    Hernandez, C
    Page, M
    Sari, T
    Geiselmann, J
    BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (02) : 301 - 340
  • [28] Filippov solutions in the analysis of piecewise linear models describing gene regulatory networks
    Machina, Anna
    Ponosov, Arcady
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) : 882 - 900
  • [29] Qualitative simulation of genetic regulatory networks using piecewise-linear models
    Hidde de Jong
    Jean-Luc Gouzé
    Céline Hernandez
    Michel Page
    Tewfik Sari
    Johannes Geiselmann
    Bulletin of Mathematical Biology, 2004, 66 : 301 - 340
  • [30] Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models
    Coombes, S.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (03): : 1101 - 1129