Groups with finitely many linear orders

被引:0
|
作者
Medvedev N.Ya. [1 ]
机构
关键词
Normal Subgroup; Linear Order; Break Point; Arbitrary Element; Semidirect Product;
D O I
10.1007/BF02671723
中图分类号
学科分类号
摘要
It is proved that there exist orderable groups having exactly 6 and 14 distinct linear orders. For any natural number k, we construct examples of orderable groups on which 2(4k+3) linear orders are defined. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:93 / 106
页数:13
相关论文
共 50 条
  • [21] GROUPS THAT ARE UNION OF FINITELY MANY PROPER SUBGROUPS
    SONN, J
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (04): : 263 - 265
  • [23] The periodic groups saturated by finitely many finite simple groups
    Lytkina, D. V.
    Tukhvatullina, L. R.
    Filippov, K. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (02) : 317 - 321
  • [24] The periodic groups saturated by finitely many finite simple groups
    D. V. Lytkina
    L. R. Tukhvatullina
    K. A. Filippov
    Siberian Mathematical Journal, 2008, 49 : 317 - 321
  • [25] On groups with infinitely many right orders
    A. V. Zenkov
    Siberian Mathematical Journal, 1997, 38 : 76 - 77
  • [26] On groups with infinitely many right orders
    Zenkov, AV
    SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (01) : 76 - 77
  • [27] Groups with finitely many non-isomorphic factor-groups
    Kurdachenko, Leonid A.
    Longobardi, Patrizia
    Maj, Mercede
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (12)
  • [28] Uncountable groups with finitely many normalizers of large subgroups
    M. De Falco
    C. Musella
    G. Sabatino
    Archiv der Mathematik, 2024, 122 : 369 - 376
  • [29] Some trends in the theory of groups with finitely many normalizers
    Dario Esposito
    Francesco de Giovanni
    Marco Trombetti
    Ricerche di Matematica, 2020, 69 : 357 - 365
  • [30] Some trends in the theory of groups with finitely many normalizers
    Esposito, Dario
    de Giovanni, Francesco
    Trombetti, Marco
    RICERCHE DI MATEMATICA, 2020, 69 (01) : 357 - 365