Nanocellulose Films to Improve the Performance of Distance-based Glucose Detection in Paper-based Microfluidic Devices

被引:0
|
作者
Sangkaew Prapaporn
Sriruangrungkamol Arisara
Chonkaew Wunpen
Dungchai Wijitar
机构
[1] King Mongkuts University of Technology Thonburi,Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science
[2] King Mongkuts University of Technology Thonburi,Department of Chemistry, Faculty of Science
来源
Analytical Sciences | 2020年 / 36卷
关键词
Distance-based paper device (dPAD); glucose; nanocellulose; silver nanoparticles (AgNPs);
D O I
暂无
中图分类号
学科分类号
摘要
We report on a simple, cost-effective, instrument-free, and portable distance-based paper device coupled with NFs for the determination of glucose. The analysis reaction is based upon the oxidative etching reaction of silver nanoparticles (AgNPs) in the presence of H2O2 that is produced from glucose after a glucose oxidase (GOx) catalytic reaction leading to a morphological transformation of AgNPs. A color band length of AgNPs is coated on to a detection channel and then etched by H2O2, and these were changed from a purple color to colorless as a correlate of the glucose concentration. To improve the performance of the enzyme immobilization, NFs, which are biocompatible without compromising their structure and biological activity, were then placed onto the sample zone. The naked-eye detection limit was 0.1 mM for 40 min of analysis time. The recoveries of glucose spiked in the artificial urine samples and control urine samples were then verified by our device and were in the acceptable range of 96–100%.
引用
收藏
页码:1447 / 1451
页数:4
相关论文
共 50 条
  • [21] Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin
    Kudo, Hiroko
    Maejima, Kento
    Hiruta, Yuki
    Citterio, Daniel
    SLAS TECHNOLOGY, 2020, 25 (01): : 47 - 57
  • [22] Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research
    Campbell, Joshua M.
    Balhoff, Joseph B.
    Landwehr, Grant M.
    Rahman, Sharif M.
    Vaithiyanathan, Manibarathi
    Melvin, Adam T.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)
  • [23] Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA
    Martinez, Andres W.
    BIOANALYSIS, 2011, 3 (23) : 2589 - 2592
  • [24] In-situ synthesized silver nanoparticles on distance-based microfluidic paper based analytical devices for non-enzymatic glucose detection in artificial urine
    ‘Aisy, Kamila Rohadatul
    Wulandari, Ika Oktavia
    Sulistyarti, Hermin
    Fahmi, Ahmad Luthfi
    Sabarudin, Akhmad
    Analytical Chemistry Letters, 2024, 14 (06) : 881 - 891
  • [25] Fluidic "Timers" for paper-based microfluidic devices
    Phillips, Scott T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [26] Paper-Based Microfluidic Devices by Plasma Treatment
    Li, Xu
    Tian, Junfei
    Nguyen, Thanh
    Shen, Wei
    ANALYTICAL CHEMISTRY, 2008, 80 (23) : 9131 - 9134
  • [27] Microfluidic paper-based devices for bioanalytical applications
    Santhiago, Murilo
    Nery, Emilia W.
    Santos, Glauco P.
    Kubota, Lauro T.
    BIOANALYSIS, 2014, 6 (01) : 89 - 106
  • [28] Advances on microfluidic paper-based electroanalytical devices
    Holman, Joseph Benjamin
    Shi, Zhengdi
    Fadahunsi, Adeola A.
    Li, Chengpan
    Ding, Weiping
    BIOTECHNOLOGY ADVANCES, 2023, 63
  • [29] Isotachophoretic Preconcenetration on Paper-Based Microfluidic Devices
    Moghadam, Babak Y.
    Connelly, Kelly T.
    Posner, Jonathan D.
    ANALYTICAL CHEMISTRY, 2014, 86 (12) : 5829 - 5837
  • [30] Paper-based microfluidic devices by asymmetric calendaring
    Oyola-Reynoso, S.
    Frankiewicz, C.
    Chang, B.
    Chen, J.
    Bloch, J. -F.
    Thuo, M. M.
    BIOMICROFLUIDICS, 2017, 11 (01)