Establishment of an efficient Agrobacterium-mediated genetic transformation system in Pelargonium graveolens: an important aromatic plant

被引:0
|
作者
Pooja Singh
Sana Khan
Susheel Kumar
Laiq ur Rahman
机构
[1] Central Institute of Medicinal and Aromatic Plants,Plant Biotechnology Division
[2] CPMB Division,Plant Molecular Virology Laboratory
[3] National Botanical Research Institute,undefined
关键词
Direct regeneration; Agrobacterium tumefaciens; Genetic transformation; Geranium;
D O I
暂无
中图分类号
学科分类号
摘要
Rose-scented geranium is an important aromatic herb, have eminent for oil. The oil of geranium commercially utilized in the perfumery, cosmetic and aromatherapy industries all over the world. It is also helpful to cure many of the diseases, since it possess antibacterial, antifungal, antioxidant, anti-inflammatory and anticancer activities. However rose scented geranium suffer from several biotic and abiotic stresses, which reduced the yield of oil. So there is need to genetically improve the geranium using biotechnological approaches. The present study demonstrates the establishment of direct regeneration and Agrobacterium tumefaciens (LBA4404) mediated transformation protocol in Pelargonium graveolens (cv. CIM-BIO 171). Different media combinations such as benzyl amino purine (BAP), kinetin, naphthalene acetic acid (NAA), and adenine di-sulphate (ADS) were standardised to induce direct regeneration in P. graveolens. The maximum regeneration frequency i.e. 90.56 ± 1.2% per explant was achieved from petiolar segments in medium containing 2.5 mg/l BAP, 0.1 mg/l NAA, 1 mg/l ADS. However, with the leaf explants only 45.94 ± 2.91% frequency was achieved. In the present study, A. tumefaciens strain LBA4404 was used carrying binary vector pBI121 with the gusA as a reporter gene and neomycin phosphotransferase II (nptII) gene as a plant selectable marker. Parameters like bacterial optical density, infection time, acetosyringone concentration and kanamycin concentration were optimised to achieve maximum transformation frequency (69.5 ± 2.3%).The putative transgenic shoots were subsequently rooted on half strength MS medium and successfully transferred to the greenhouse. The transgenic plants were characterised by gus histochemical assay, PCR analysis (nptII-786 bp and gus A- 1707 bp) and Southern hybridization tests using gusA gene probe. The regeneration as well as transformation protocol will no doubt provide the basis to decipher the insights of metabolic pathways in geranium. Also could be useful for genetic improvement, to make it more tolerant/resistant against biotic and abiotic stresses and ultimately fruitful for Indian farmers in agronomic traits like high biomass, oil content, yield and better quality.
引用
收藏
页码:35 / 44
页数:9
相关论文
共 50 条
  • [41] Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata
    V. Babic
    R. S. Datla
    G. J. Scoles
    W. A. Keller
    Plant Cell Reports, 1998, 17 : 183 - 188
  • [42] The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation
    Lacroix, Benoit
    Citovsky, Vitaly
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2013, 57 (6-8): : 467 - 481
  • [43] An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis
    Shuangwei Liu
    Jingjing Ma
    Hongmei Liu
    Yingtian Guo
    Wei Li
    Shihui Niu
    Plant Methods, 16
  • [44] Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata
    Babic, V
    Datla, RS
    Scoles, GJ
    Keller, WA
    PLANT CELL REPORTS, 1998, 17 (03) : 183 - 188
  • [45] Efficient plant regeneration and Agrobacterium-mediated transformation in Medicago and Trifolium species
    Ding, YL
    Aldao-Humble, G
    Ludlow, E
    Drayton, M
    Lin, YH
    Nagel, J
    Dupal, M
    Zhao, GQ
    Pallaghy, C
    Kalla, R
    Emmerling, M
    Spangenberg, G
    PLANT SCIENCE, 2003, 165 (06) : 1419 - 1427
  • [46] Improvement of plant regeneration and Agrobacterium-mediated genetic transformation of Stylosanthes guianensis
    Guo, Pengfei
    Liu, Pandao
    Lei, Jian
    Chen, Caihong
    Qiu, Hong
    Liu, Guodao
    Chen, Zhijian
    Luo, Lijuan
    TROPICAL GRASSLANDS-FORRAJES TROPICALES, 2019, 7 (05): : 480 - 492
  • [47] Agrobacterium-mediated genetic transformation of peanut and the efficient recovery of transgenic plants
    Chen, Mingna
    Yang, Qingli
    Wang, Tong
    Chen, Na
    Pan, Lijuan
    Chi, Xiaoyuan
    Yang, Zhen
    Wang, Mian
    Yu, Shanlin
    CANADIAN JOURNAL OF PLANT SCIENCE, 2015, 95 (04) : 735 - 744
  • [48] Efficient method for Agrobacterium-mediated genetic transformation of tobacco nodal segments
    da Silva, R. G.
    Coppede, J. S.
    Silva, J. O. L.
    Zingaretti, S. M.
    GENETICS AND MOLECULAR RESEARCH, 2018, 17 (04)
  • [49] An Efficient Protocol for the Agrobacterium-mediated Genetic Transformation of Microalga Chlamydomonas reinhardtii
    Pratheesh, P. T.
    Vineetha, M.
    Kurup, G. Muraleedhara
    MOLECULAR BIOTECHNOLOGY, 2014, 56 (06) : 507 - 515
  • [50] An Efficient Protocol for the Agrobacterium-mediated Genetic Transformation of Microalga Chlamydomonas reinhardtii
    P. T. Pratheesh
    M. Vineetha
    G. Muraleedhara Kurup
    Molecular Biotechnology, 2014, 56 : 507 - 515