Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy

被引:0
|
作者
Stylianos Drisis
Thierry Metens
Michael Ignatiadis
Konstantinos Stathopoulos
Shih-Li Chao
Marc Lemort
机构
[1] Institute Jules Bordet,Radiology Department
[2] Erasme University Hospital,Radiology Department
[3] Institute Jules Bordet,Oncology Department
来源
European Radiology | 2016年 / 26卷
关键词
Perfusion magnetic resonance imaging; Neoadjuvant therapy; Breast cancer; Oestrogen receptor; Triple negative breast cancer;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1474 / 1484
页数:10
相关论文
共 50 条
  • [31] Prediction of low-risk breast cancer using quantitative DCE-MRI and its pathological basis
    Xu, Tingting
    Zhang, Lin
    Xu, Hong
    Kang, Sifeng
    Xu, Yali
    Luo, Xiaoyu
    Hua, Ting
    Tang, Guangyu
    ONCOTARGET, 2017, 8 (69) : 114360 - 114370
  • [32] Can mammographic breast density predict complete pathological response in patients with locally advanced breast cancer following neoadjuvant chemotherapy?
    Agarwal, Veenoo
    Spalding, Lisa
    Blick, Tony
    Thompson, Erik W.
    Dobrovic, Alexander
    Redfern, Andrew
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2018, 14 : 65 - 65
  • [33] Predictive value of neoadjuvant chemotherapy on breast cancer subtypes evaluated by DCE-MRI and MRI perfusion parameters
    Han, Bing
    Pan, Shushu
    Ruan, Mei
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 2023, 61 (10) : 807 - 812
  • [34] Association between Pathological Complete Response and Outcome Following Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients
    Luangdilok, Sutima
    Samarnthai, Norasate
    Korphaisarn, Krittiya
    JOURNAL OF BREAST CANCER, 2014, 17 (04) : 376 - 385
  • [35] An approach to the prediction of breast cancer response to neoadjuvant chemotherapy based on tumor habitats in DCE-MRI images
    Carvalho, Edson Damasceno
    da Silva Neto, Otilio Paulo
    Mathew, Mano Joseph
    de Carvalho Filho, Antonio Oseas
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234
  • [36] Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer
    Fan, Ming
    Li, Hui
    Wang, Shijian
    Zheng, Bin
    Zhang, Juan
    Li, Lihua
    PLOS ONE, 2017, 12 (02):
  • [37] Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity
    Zhang, Xinyu
    Teng, Xinzhi
    Zhang, Jiang
    Lai, Qingpei
    Cai, Jing
    BREAST CANCER RESEARCH, 2024, 26 (01)
  • [38] Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer
    Li, Yuting
    Fan, Yaheng
    Xu, Dinghua
    Li, Yan
    Zhong, Zhangnan
    Pan, Haoyu
    Huang, Bingsheng
    Xie, Xiaotong
    Yang, Yang
    Liu, Bihua
    FRONTIERS IN ONCOLOGY, 2023, 12
  • [39] Impact of age on pathological complete response and locoregional recurrence in locally advanced breast cancer after neoadjuvant chemotherapy
    Chou, Hsu-Huan
    Kuo, Wen-Ling
    Yu, Chi-Chang
    Tsai, Hsiu-Pei
    Shen, Shih-Cheh
    Chu, Chia-Hui
    Yu, Ming-Chin
    Lo, Yung-Feng
    Dabora, Muawiya A.
    Chang, Hsien-Kun
    Lin, Yung-Chang
    Ueng, Shir-Hwa
    Chen, Shin-Cheh
    BIOMEDICAL JOURNAL, 2019, 42 (01) : 66 - 74
  • [40] Evaluation of Neoadjuvant Chemotherapeutic Effects of Breast Cancer by MRI: Accuracy of MRI in Predicting Pathological Complete Response
    Fukuda, T.
    Gomi, N.
    Miyagi, Y.
    Tokudome, N.
    Takahashi, S.
    Ito, Y.
    Iwase, T.
    Akiyama, F.
    CANCER RESEARCH, 2009, 69 (24) : 715S - 715S