On Intersections of Reed–Muller Like Codes

被引:0
|
作者
F. I. Solov’eva
机构
[1] Siberian Branch of the Russian Academy of Sciences,Sobolev Institute of Mathematics
来源
Problems of Information Transmission | 2021年 / 57卷
关键词
Reed–Muller code; Reed–Muller like code; code intersection problem; Pulatov codes; components of Reed–Muller codes; -component; switching; switching construction for codes;
D O I
暂无
中图分类号
学科分类号
摘要
A binary code that has the parameters and possesses the main properties of the classical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th-order Reed–Muller code \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RM_{r,m}$$\end{document} will be called an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th-order Reed–Muller like code and will be denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LRM_{r,m}$$\end{document}. The class of such codes contains the family of codes obtained by the Pulatov construction and also classical linear and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_4$$\end{document}-linear Reed–Muller codes. We analyze the intersection problem for the Reed–Muller like codes. We prove that for any even \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le k\le 2^{2\sum\limits_{i=0}^{r-1}\binom{m-1}{i}}$$\end{document} there exist \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LRM_{r,m}$$\end{document} codes of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^m$$\end{document} having intersection size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. We also prove that there exist two Reed–Muller like codes of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^m$$\end{document} whose intersection size is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k_1 k_2$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k_s\le |RM_{r-1,m-1}|$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in\{1,2\}$$\end{document}, for any admissible length starting from 16.
引用
收藏
页码:357 / 367
页数:10
相关论文
共 50 条
  • [21] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [22] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [23] ON A CONJECTURE ON REED-MULLER CODES
    WASAN, SK
    GAMES, RA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 56 (02) : 269 - 271
  • [24] Skew Reed-Muller codes
    Geiselmann, Willi
    Ulmer, Felix
    RINGS, MODULES AND CODES, 2019, 727 : 107 - 116
  • [25] WEIGHTED REED MULLER CODES AND ALGEBRAIC GEOMETRIC CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) : 1821 - 1826
  • [26] A performance comparison of polar codes and reed-muller codes
    Arikan, Erdal
    IEEE COMMUNICATIONS LETTERS, 2008, 12 (06) : 447 - 449
  • [27] Complete Complementary Codes and Generalized Reed-Muller Codes
    Chen, Chao-Yu
    Wang, Chung-Hsuan
    Chao, Chi-Chao
    IEEE COMMUNICATIONS LETTERS, 2008, 12 (11) : 849 - 851
  • [28] Perfect mixed codes from generalized Reed–Muller codes
    Alexander M. Romanov
    Designs, Codes and Cryptography, 2024, 92 : 1747 - 1759
  • [29] Optimal Testing of Reed-Muller Codes
    Bhattacharyya, Arnab
    Kopparty, Swastik
    Schoenebeck, Grant
    Sudan, Madhu
    Zuckerman, David
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 488 - 497
  • [30] THE PARAMETERS OF PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    DISCRETE MATHEMATICS, 1990, 81 (02) : 217 - 221