Strong Markov Properties for Markov Random Fields

被引:0
|
作者
Kimberly K. J. Kinateder
机构
[1] Wright State University,Department of Mathematics and Statistics
来源
关键词
Markov random field; stopping line; strong Markov;
D O I
暂无
中图分类号
学科分类号
摘要
Markov properties and strong Markov properties for random fields are defined and discussed. Special attention is given to those defined by I. V. Evstigneev. The strong Markov nature of Markov random fields with respect to random domains such as [0, L], where L is a multidimensional extension of a stopping time, is explored. A special case of this extension is shown to generalize a result of Merzbach and Nualart for point processes. As an additional example, Evstigneev's Markov and strong Markov properties are considered for independent increment jump processes.
引用
收藏
页码:1101 / 1114
页数:13
相关论文
共 50 条
  • [21] Markov Random Fields on Triangle Meshes
    Andersen, Vedrana
    Aanaes, Henrik
    Baerentzen, Andreas
    Nielsen, Mads
    WSCG 2010: COMMUNICATION PAPERS PROCEEDINGS, 2010, : 265 - +
  • [22] LEARNING IN GAUSSIAN MARKOV RANDOM FIELDS
    Riedl, Thomas J.
    Singer, Andrew C.
    Choi, Jun Won
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3070 - 3073
  • [23] Some diagnostics for Markov random fields
    Cressie, Noel
    Kapat, Prasenjit
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (03) : 726 - 749
  • [24] MARKOV RANDOM FIELDS AND GIBBS ENSEMBLES
    SPITZER, F
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (02): : 142 - &
  • [25] A family of nonisomorphic Markov random fields
    Christopher Hoffman
    Israel Journal of Mathematics, 2004, 142 : 345 - 366
  • [26] Arithmetic Encoding of Markov Random Fields
    Reyes, Matthew G.
    Neuhoff, David L.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 532 - 536
  • [27] Bottleneck potentials in Markov Random Fields
    Abbas, Ahmed
    Swoboda, Paul
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3174 - 3183
  • [28] MARKOV RANDOM FIELDS ON AN INFINITE TREE
    SPITZER, F
    ANNALS OF PROBABILITY, 1975, 3 (03): : 387 - 398
  • [29] Loss networks and Markov random fields
    Zachary, S
    Ziedins, I
    JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) : 403 - 414
  • [30] Markov Random Fields for Collaborative Filtering
    Steck, Harald
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32