Delayed Feedback Control of a Delay Equation at Hopf Bifurcation

被引:0
|
作者
Bernold Fiedler
Sergio Muniz Oliva
机构
[1] Freie Universität Berlin,Institut für Mathematik
[2] Universidade de São Paulo,Instituto de Matemática e Estatística, Departamento de Matemática Aplicada
关键词
Pyragas control; Multiple scale expansion; Characteristic equation; Three time lags; Polynomials and exponentials; Linear stability; Stabilization of periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We embark on a case study for the scalar delay equation x˙(t)=λf(x(t-1))+b-1(x(t-ϑ)+x(t-ϑ-p/2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dot{x} (t) = \lambda f(x(t-1)) + b^{-1} (x(t-\vartheta ) + x(t-\vartheta -p/2)) \end{aligned}$$\end{document}with odd nonlinearity f, real nonzero parameters λ,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \, b$$\end{document}, and three positive time delays 1,ϑ,p/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,\, \vartheta ,\, p/2$$\end{document}. We assume supercritical Hopf bifurcation from x≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \equiv 0$$\end{document} in the well-understood single-delay case b=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = \infty $$\end{document}. Normalizing f′(0)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f' (0)=1$$\end{document}, branches of constant minimal period pk=2π/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k = 2\pi /\omega _k$$\end{document} are known to bifurcate from eigenvalues iωk=i(k+12)π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\omega _k = i(k+\tfrac{1}{2})\pi $$\end{document} at λk=(-1)k+1ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k = (-1)^{k+1}\omega _k$$\end{document}, for any nonnegative integer k. The unstable dimension is k, at the local branch k. We obtain stabilization of such branches, for arbitrarily large unstable dimension k. For p:=pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:= p_k$$\end{document} the branch k of constant period pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k$$\end{document} persists as a solution, for any b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ne 0$$\end{document} and ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document}. Indeed the delayed feedback term controlled by b vanishes on branch k: the feedback control is noninvasive there. Following an idea of Pyragas, we seek parameter regions P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of controls b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ne 0$$\end{document} and delays ϑ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta \ge 0$$\end{document} such that the branch k becomes stable, locally at Hopf bifurcation. We determine rigorous expansions for P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} in the limit of large k. The only two regions P=P±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P} = \mathcal {P}^\pm $$\end{document} which we were able to detect, in this setting, required delays ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document} near 1, controls b near (-1)k·2/ωk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1)^k \cdot 2/\omega _k$$\end{document}, and were of very small area of order k-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{-4}$$\end{document}. Our analysis is based on a 2-scale covering lift for the frequencies involved.
引用
收藏
页码:1357 / 1391
页数:34
相关论文
共 50 条
  • [41] Control of Hopf bifurcation in Internet congestion control model via time-delayed feedback control
    Xu, Xian-Fan
    Fan, Guo
    Ding, Da-Wei
    Yi, Liu
    Han, Liu-Jun
    Information Technology Journal, 2013, 12 (18) : 4493 - 4497
  • [42] Hopf bifurcation control for delayed complex networks
    Cheng, Zunshui
    Cao, Jinde
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (06): : 846 - 857
  • [43] Hopf bifurcation of time-delayed feedback control for maglev system with flexible guideway
    Zhang, Zhizhou
    Zhang, Lingling
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6106 - 6112
  • [44] Hopf bifurcation for a small-world network model with parameters delay feedback control
    Zhao, Hongyong
    Xie, Wen
    NONLINEAR DYNAMICS, 2011, 63 (03) : 345 - 357
  • [45] Hopf bifurcation for a small-world network model with parameters delay feedback control
    Hongyong Zhao
    Wen Xie
    Nonlinear Dynamics, 2011, 63 : 345 - 357
  • [46] Hopf bifurcation in a control system for the Washout filter-based delayed neural equation
    Zhou, SB
    Liao, XF
    Wu, ZF
    Wong, KW
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 101 - 115
  • [47] Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback
    Gaudreault, Mathieu
    Lepine, Francoise
    Vinals, Jorge
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [48] Hopf bifurcation and chaotification of Josephson junction with linear delayed feedback
    Zhang Li-Sen
    Cai Li
    Feng Chao-Wen
    ACTA PHYSICA SINICA, 2011, 60 (06)
  • [49] DOUBLE HOPF BIFURCATION AND CHAOS IN LIU SYSTEM WITH DELAYED FEEDBACK
    Ding, Yuting
    Jiang, Weihua
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2011, 1 (03): : 325 - 349
  • [50] HOPF BIFURCATION AND STABILITY OF PERIODIC SOLUTIONS IN THE DELAYED LIENARD EQUATION
    Hu, Guang-Ping
    Li, Wan-Tong
    Yan, Xiang-Ping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (10): : 3147 - 3157