Unsupervised Domain Adaptation with Background Shift Mitigating for Person Re-Identification

被引:1
|
作者
Yan Huang
Qiang Wu
Jingsong Xu
Yi Zhong
Zhaoxiang Zhang
机构
[1] University of Technology Sydney,School of Electrical and Data Engineering
[2] Beijing Institute of Technology,School of Information and Electronics
[3] Chinese Academy of Sciences,National Laboratory of Pattern Recognition, Institute of Automation
来源
关键词
Person re-identification; Unsupervised domain adaptation; Background suppression; Image generation; Virtual label estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Unsupervised domain adaptation has been a popular approach for cross-domain person re-identification (re-ID). There are two solutions based on this approach. One solution is to build a model for data transformation across two different domains. Thus, the data in source domain can be transferred to target domain where re-ID model can be trained by rich source domain data. The other solution is to use target domain data plus corresponding virtual labels to train a re-ID model. Constrains in both solutions are very clear. The first solution heavily relies on the quality of data transformation model. Moreover, the final re-ID model is trained by source domain data but lacks knowledge of the target domain. The second solution in fact mixes target domain data with virtual labels and source domain data with true annotation information. But such a simple mixture does not well consider the raw information gap between data of two domains. This gap can be largely contributed by the background differences between domains. In this paper, a Suppression of Background Shift Generative Adversarial Network (SBSGAN) is proposed to mitigate the gaps of data between two domains. In order to tackle the constraints in the first solution mentioned above, this paper proposes a Densely Associated 2-Stream (DA-2S) network with an update strategy to best learn discriminative ID features from generated data that consider both human body information and also certain useful ID-related cues in the environment. The built re-ID model is further updated using target domain data with corresponding virtual labels. Extensive evaluations on three large benchmark datasets show the effectiveness of the proposed method.
引用
收藏
页码:2244 / 2263
页数:19
相关论文
共 50 条
  • [31] Hierarchical Connectivity-Centered Clustering for Unsupervised Domain Adaptation on Person Re-Identification
    Bai, Yan
    Wang, Ce
    Lou, Yihang
    Liu, Jun
    Duan, Ling-Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6715 - 6729
  • [32] Enhancing Unsupervised Domain Adaptation for Person Re-Identification with the Minimal Transfer Cost Framework
    Xu, Sheng
    Xiang, Shixiong
    Meng, Feiyu
    Wu, Qiang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 4197 - 4218
  • [33] Discrepant mutual learning fusion network for unsupervised domain adaptation on person re-identification
    Yun, Xiao
    Wang, Qunqun
    Cheng, Xiaozhou
    Song, Kaili
    Sun, Yanjing
    APPLIED INTELLIGENCE, 2023, 53 (03) : 2951 - 2966
  • [34] Unsupervised Domain Adaptation Person Re-Identification Method Based on Softened Pseudo Labeling
    Huang, Tongyuan
    Chen, Liao
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [35] Unsupervised person re-identification by Intra-Inter Camera Affinity Domain Adaptation
    Liu, Guiqing
    Wu, Jinzhao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 80
  • [36] INTENSIFYING THE CONSISTENCY OF PSEUDO LABEL REFINEMENT FOR UNSUPERVISED DOMAIN ADAPTATION PERSON RE-IDENTIFICATION
    Zha, Linfan
    Chen, Yanming
    Zhou, Peng
    Zhang, Yiwen
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1547 - 1552
  • [37] Discrepant mutual learning fusion network for unsupervised domain adaptation on person re-identification
    Xiao Yun
    Qunqun Wang
    Xiaozhou Cheng
    Kaili Song
    Yanjing Sun
    Applied Intelligence, 2023, 53 : 2951 - 2966
  • [38] A Novel Unsupervised Camera-aware Domain Adaptation Framework for Person Re-identification
    Qi, Lei
    Wang, Lei
    Huo, Jing
    Zhou, Luping
    Shi, Yinghuan
    Gao, Yang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8079 - 8088
  • [39] Adaptation and Re-Identification Network: An Unsupervised Deep Transfer Learning Approach to Person Re-Identification
    Li, Yu-Jhe
    Yang, Fu-En
    Liu, Yen-Cheng
    Yeh, Yu-Ying
    Du, Xiaofei
    Wang, Yu-Chiang Frank
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 285 - 291
  • [40] Anti-Forgetting Adaptation for Unsupervised Person Re-identification
    Chen, Hao
    Bremond, Francois
    Sebe, Nicu
    Zhang, Shiliang
    arXiv,