The Hamilton-Jacobi-Bellman equation for a class of differential games with random duration

被引:0
|
作者
E. V. Shevkoplyas
机构
[1] St. Petersburg State University,Faculty of Applied Mathematics and Control Processes
来源
关键词
Remote Control; Hazard Function; Weibull Distribution; Differential Game; Bellman Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the class of differential games with random duration. We show that a problem with random game duration can be reduced to a standard problem with an infinite time horizon. A Hamilton-Jacobi-Bellman-type equation is derived for finding optimal solutions in differential games with random duration. Results are illustrated by an example of a game-theoretic model of nonrenewable resource extraction. The problem is analyzed under the assumption of Weibull-distributed random terminal time of the game.
引用
收藏
页码:959 / 970
页数:11
相关论文
共 50 条
  • [41] Bifurcation points of the generalized solution of the Hamilton-Jacobi-Bellman equation
    Rodin, A. S.
    Shagalova, L. G.
    IFAC PAPERSONLINE, 2018, 51 (32): : 866 - 870
  • [42] Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation
    Sundar, S
    Shiller, Z
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1997, 13 (02): : 305 - 310
  • [43] An adaptive domain decomposition method for the Hamilton-Jacobi-Bellman equation
    Alwardi, H.
    Wang, S.
    Jennings, L. S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1361 - 1373
  • [44] An Adaptive Cross Approximation Method for the Hamilton-Jacobi-Bellman Equation
    Wang, Zhong
    Li, Yan
    IFAC PAPERSONLINE, 2017, 50 (01): : 6289 - 6294
  • [45] A New Analytical Method for Solving Hamilton-Jacobi-Bellman Equation
    Matinfar, M.
    Saeidy, M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 11 (04): : 252 - 263
  • [46] Ergodic problem for the Hamilton-Jacobi-Bellman equation. II
    CEREMADE, URA CNRS 749, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France
    Anna Inst Henri Poincare Annal Anal Non Lineaire, 1 (1-24):
  • [47] Lower semicontinuous solutions for a class of Hamilton-Jacobi-Bellman equations
    Carja, O
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) : 637 - 657
  • [48] On the singular set for solutions to a class of Hamilton-Jacobi-Bellman equations
    Albano, P
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (04): : 473 - 497
  • [49] Ergodic problem for the Hamilton-Jacobi-Bellman equation. II
    Arisawa, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01): : 1 - 24
  • [50] New Lambert Algorithm Using the Hamilton-Jacobi-Bellman Equation
    Bando, Mai
    Yamakawa, Hiroshi
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2010, 33 (03) : 1000 - 1008