Optimal Control of the FitzHugh–Nagumo Stochastic Model with Nonlinear Diffusion

被引:0
|
作者
Francesco Cordoni
Luca Di Persio
机构
[1] University of Verona,Department of Computer Science
来源
关键词
FitzHugh–Nagumo model; Stochastic process; Optimal control; -accretive operator; Cauchy problem; 47H06; 60H15; 91G80; 93E20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the existence and first order conditions of optimality for a stochastic optimal control problem inspired by the celebrated FitzHugh–Nagumo model, with nonlinear diffusion term, perturbed by a linear multiplicative Brownian-type noise. The main novelty of the present paper relies on the application of the rescaling method which allows us to reduce the original problem to a random optimal one.
引用
收藏
页码:2947 / 2968
页数:21
相关论文
共 50 条
  • [21] Pattern formation by super-diffusion in FitzHugh-Nagumo model
    Iqbal, Naveed
    Wu, Ranchao
    Liu, Biao
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 313 : 245 - 258
  • [22] Funnel control for the monodomain equations with the FitzHugh-Nagumo model
    Berger, Thomas
    Breiten, Tobias
    Puche, Marc
    Reis, Timo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 164 - 214
  • [24] THE DETECTION THRESHOLD, NOISE AND STOCHASTIC RESONANCE IN THE FITZHUGH-NAGUMO NEURON MODEL
    PEI, X
    BACHMANN, K
    MOSS, F
    PHYSICS LETTERS A, 1995, 206 (1-2) : 61 - 65
  • [25] Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model
    Gong, PL
    Xu, JX
    PHYSICAL REVIEW E, 2001, 63 (03):
  • [26] Analytical and Simulation Results for the Stochastic Spatial Fitzhugh-Nagumo Model Neuron
    Tuckwell, Henry C.
    NEURAL COMPUTATION, 2008, 20 (12) : 3003 - 3033
  • [27] Research on Suprathreshold. Stochastic Resonance of FitzHugh-Nagumo Neuron Model
    Xue Lingyun
    Li Meng
    Fan Yingle
    2008 IEEE INTERNATIONAL SYMPOSIUM ON IT IN MEDICINE AND EDUCATION, VOLS 1 AND 2, PROCEEDINGS, 2008, : 1034 - +
  • [28] Generalized FitzHugh-Nagumo model with tristable dynamics: Deterministic and stochastic bifurcations
    Nkounga, I. B. Tagne
    Xia, Yibo
    Yanchuk, Serhiy
    Yamapi, R.
    Kurths, Juergen
    CHAOS SOLITONS & FRACTALS, 2023, 175
  • [29] Time-Periodic Fitzhugh-Nagumo Equation and the Optimal Control Problems
    Hanbing LIU
    Wenqiang LUO
    Shaohua LI
    ChineseAnnalsofMathematics,SeriesB, 2021, (03) : 471 - 486
  • [30] Time-Periodic Fitzhugh-Nagumo Equation and the Optimal Control Problems
    Hanbing Liu
    Wenqiang Luo
    Shaohua Li
    Chinese Annals of Mathematics, Series B, 2021, 42 : 471 - 486