Effect of Dust Grains on Dust-Ion-Acoustic KdV Solitons in Magnetized Complex Plasma with Superthermal Electrons

被引:0
|
作者
M. Nouri Kadijani
H. Zaremoghaddam
机构
[1] Islamic Azad University,Young Researchers Club, Kashmar Branch
来源
Journal of Fusion Energy | 2012年 / 31卷
关键词
Superthermal electrons; Kappa distribution function; DIA waves; Magnetized dusty plasma;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the propagation of dust-ion-acoustic (DIA) waves in a magnetized collisionless complex (dusty) plasma consisting of superthermal electrons are investigated. In the discharge plasma, the electron temperature is usually much greater than ion temperature. Thus, the electron distribution function DF), is generally nonmaxwellian, has to be modeled. For this purpose, the generalized Lorentzian (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \kappa $$\end{document})-DF is used to simulate the electron DF. Two types of modes (fast and slow DIA modes) exist in this plasma. By deriving Korteweg-de Vries (KdV) equation, using reductive perturbation method, both regions of solitary waves, rarefactive (dark) and compressive (bright) solitary waves, are allowed to be propagated in this plasma. Properties of DIA solitary waves are investigated numerically. How dust grains and superthermal electrons affect the sign and the magnitude of nonlinear coefficient of KdV equation is also discussed in detail. It is noted that the velocity, amplitude, and width of a DIA soliton is studied as well.
引用
收藏
页码:455 / 462
页数:7
相关论文
共 50 条
  • [21] Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons
    S.Ahmadi ABRISHAMI
    M.Nouri KADIJANI
    Plasma Science and Technology, 2014, (06) : 545 - 551
  • [22] Three-dimensional dust-ion-acoustic rogue waves in a magnetized dusty pair-ion plasma with nonthermal nonextensive electrons and opposite polarity dust grains
    Guo, Shimin
    Mei, Liquan
    PHYSICS OF PLASMAS, 2014, 21 (08)
  • [23] Cylindrical and spherical dust-ion-acoustic modified Gardner solitons in dusty plasmas with two-temperature superthermal electrons
    M. S. Alam
    M. M. Masud
    A. A. Mamun
    Plasma Physics Reports, 2013, 39 : 1011 - 1018
  • [24] Effect of superthermal electrons on the characteristics of dust acoustic solitary waves in a magnetized hot dusty plasma with dust charge fluctuation
    Shahmohammadi, Nafise
    Dorranian, Davoud
    Hakimipagouh, Hossien
    CANADIAN JOURNAL OF PHYSICS, 2015, 93 (03) : 344 - 352
  • [25] Dust-ion-acoustic solitons with transverse perturbation
    Moslem, WM
    El-Taibany, WF
    El-Shewy, EK
    El-Shamy, EF
    PHYSICS OF PLASMAS, 2005, 12 (05) : 1 - 6
  • [26] Dust ion acoustic shock and solitary waves in a magnetized multi-component plasma with superthermal electrons
    El-Monier, S. Y.
    El-Helbawy, A. S.
    Elsayed, Moamen M.
    Saad, M.
    PHYSICA SCRIPTA, 2023, 98 (06)
  • [27] Weakly dissipative dust-ion-acoustic solitons in complex plasmas and the effect of electromagnetic radiation
    Losseva, T. V.
    Popel, S. I.
    Golub, A. P.
    Izvekova, Yu. N.
    Shukla, P. K.
    PHYSICS OF PLASMAS, 2012, 19 (01)
  • [28] Effect of dust charge polarization on the propagation characteristics of nonlinear Dust-acoustic solitons and double layers in superthermal un-magnetized complex plasma
    Murad, Adil
    Khan, Ghafran
    Ikramullah
    Adnan, Muhammad
    Khattak, Fida Younus
    ADVANCES IN SPACE RESEARCH, 2022, 70 (11) : 3718 - 3730
  • [29] Effect of superthermal electrons on dust-acoustic Gardner solitons in nonplanar geometry
    Deb Kumar Ghosh
    Uday Narayan Ghosh
    Prasanta Chatterjee
    C S Wong
    Pramana, 2013, 80 : 665 - 676
  • [30] Effect of superthermal electrons on dust-acoustic Gardner solitons in nonplanar geometry
    Ghosh, Deb Kumar
    Ghosh, Uday Narayan
    Chatterjee, Prasanta
    Wong, C. S.
    PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (04): : 665 - 676