Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning

被引:0
|
作者
Hishan Tharmaseelan
Abhinay K. Vellala
Alexander Hertel
Fabian Tollens
Lukas T. Rotkopf
Johann Rink
Piotr Woźnicki
Isabelle Ayx
Sönke Bartling
Dominik Nörenberg
Stefan O. Schoenberg
Matthias F. Froelich
机构
[1] University Medical Center Mannheim,Department of Radiology and Nuclear Medicine
[2] Heidelberg University,undefined
[3] German Cancer Research Center,undefined
来源
关键词
Deep learning; Radiomics; Machine learning; Metastases; Gastrointestinal;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Interobserver Variability in CT-based Morphologic Tumor Response Assessment of Colorectal Liver Metastases
    Wesdorp, Nina J.
    Kemna, Ruby
    Bolhuis, Karen
    van Waesberghe, Jan H. T. M.
    Nota, Irene M. G. C.
    Struik, Femke
    Abdennabi, Ikrame Oulad
    Phoa, Saffire S. K. S.
    van Dieren, Susan
    van Amerongen, Martinus J.
    Chapelle, Thiery
    Dejong, Cornelis H. C.
    Engelbrecht, Marc R. W.
    Gerhards, Michael F.
    Grunhagen, Dirk
    van Gulik, Thomas M.
    Hermans, John J.
    de Jong, Koert P.
    Klaase, Joost M.
    Liem, Mike S. L.
    van Lienden, Krijn P.
    Molenaar, I. Quintus
    Patijn, Gijs A.
    Rijken, Arjen M.
    Ruers, Theo M.
    Verhoef, Cornelis
    de Wilt, Johannes H. W.
    Swijnenburg, Rutger-Jan
    Punt, Cornelis J. A.
    Huiskens, Joost
    Stoker, Jaap
    Kazemier, Geert
    RADIOLOGY-IMAGING CANCER, 2022, 4 (03):
  • [22] Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study
    Martijn P. A. Starmans
    Florian E. Buisman
    Michel Renckens
    François E. J. A. Willemssen
    Sebastian R. van der Voort
    Bas Groot Koerkamp
    Dirk J. Grünhagen
    Wiro J. Niessen
    Peter B. Vermeulen
    Cornelis Verhoef
    Jacob J. Visser
    Stefan Klein
    Clinical & Experimental Metastasis, 2021, 38 : 483 - 494
  • [23] Using machine learning to develop a stacking ensemble learning model for the CT radiomics classification of brain metastases
    Zhang, Huai-wen
    Wang, Yi-ren
    Hu, Bo
    Song, Bo
    Wen, Zhong-jian
    Su, Lei
    Chen, Xiao-man
    Wang, Xi
    Zhou, Ping
    Zhong, Xiao-ming
    Pang, Hao-wen
    Wang, You-hua
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] CT-based radiomics analysis to predict local progression of recurrent colorectal liver metastases after microwave ablation
    Hu, Hao
    Chi, Jia Chang
    Zhai, Bo
    Guo, Jin He
    MEDICINE, 2023, 102 (52) : E36586
  • [25] Deep learning-based radiomics predicts response to chemotherapy in colorectal liver metastases
    Wei, Jingwei
    Cheng, Jin
    Gu, Dongsheng
    Chai, Fan
    Hong, Nan
    Wang, Yi
    Tian, Jie
    MEDICAL PHYSICS, 2021, 48 (01) : 513 - 522
  • [26] Predicting local tumour progression after ablation for colorectal liver metastases: CT-based radiomics of the ablation zone
    Staal, F. C. R.
    Taghavi, M.
    van der Reijd, D. J.
    Gomez, F. M.
    Imani, F.
    Klompenhouwer, E. G.
    Meek, D.
    Roberti, S.
    de Boer, M.
    Lambregts, D. M. J.
    Beets-Tan, R. G. H.
    Maas, M.
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 141
  • [27] DIFFERENTIATION OF ADRENAL LIPID-POOR BENIGN LESIONS AND METASTASES USING CT-BASED RADIOMICS NOMOGRAM
    Yang, Cunxia
    Chen, Houquan
    Wang, Jianing
    Xue, Linyan
    Li, Siqi
    Wu, Chunmei
    Gao, Bulang
    Yin, Xiaoping
    MEDICINE, 2024, 103 (37)
  • [28] Deep Learning Radiomics Model of Contrast-Enhanced CT for Differentiating the Primary Source of Liver Metastases
    Jia, Wenjing
    Li, Fuyan
    Cui, Yi
    Wang, Yong
    Dai, Zhengjun
    Yan, Qingqing
    Liu, Xinhui
    Li, Yuting
    Chang, Huan
    Zeng, Qingshi
    ACADEMIC RADIOLOGY, 2024, 31 (10) : 4057 - 4067
  • [29] Deep learning to segment liver metastases on CT images: impact on a radiomics method to predict response to chemotherapy
    Giannini, Valentina
    Defeudis, Arianna
    Rosati, Samanta
    Cappello, Giovanni
    Vassallo, Lorenzo
    Mazzetti, Simone
    Panic, Jovana
    Regge, Daniele
    Balestra, Gabriella
    2020 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2020,
  • [30] CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study
    Hongzheng Song
    Shifeng Yang
    Boyang Yu
    Na Li
    Yonghua Huang
    Rui Sun
    Bo Wang
    Pei Nie
    Feng Hou
    Chencui Huang
    Meng Zhang
    Hexiang Wang
    Cancer Imaging, 23