Tractor Geometry of Asymptotically Flat Spacetimes

被引:0
|
作者
Yannick Herfray
机构
[1] Université Libre de Bruxelles,Départment de Mathématique
来源
Annales Henri Poincaré | 2022年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In a recent work it was shown that conformal Carroll geometries are canonically equipped with a null-tractor bundle generalizing the tractor bundle of conformal geometry. We here show that in the case of the conformal boundary of an asymptotically flat spacetime of any dimension d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, this null-tractor bundle over null infinity can be canonically derived from the interior spacetime geometry. As was previously discussed, compatible normal connections on the null-tractor bundle are not unique: We prove that they are in fact in one-to-one correspondence with the germ of the asymptotically flat spacetimes to leading order. In dimension d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} the tractor connection invariantly encodes a choice of mass and angular momentum aspect, in dimension d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} a choice of asymptotic shear. In dimension d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document} the presence of tractor curvature correspond to gravitational radiation. Even thought these results are by construction geometrical and coordinate invariant, we give explicit expressions in BMS coordinates for concreteness.
引用
收藏
页码:3265 / 3310
页数:45
相关论文
共 50 条
  • [31] Novel characterization of gravitational radiation in asymptotically flat spacetimes
    Fernandez-Alvarez, Francisco
    Senovilla, Jose M. M.
    PHYSICAL REVIEW D, 2020, 101 (02)
  • [32] On the definition of the spin charge in asymptotically-flat spacetimes
    Freidel, Laurent
    Moosavian, Seyed Faroogh
    Pranzetti, Daniele
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (01)
  • [33] Mean Curvature Flow in Asymptotically Flat Product Spacetimes
    Klaus Kröncke
    Oliver Lindblad Petersen
    Felix Lubbe
    Tobias Marxen
    Wolfgang Maurer
    Wolfgang Meiser
    Oliver C. Schnürer
    Áron Szabó
    Boris Vertman
    The Journal of Geometric Analysis, 2021, 31 : 5451 - 5479
  • [34] Quasi-asymptotically flat spacetimes and their ADM mass
    Nucamendi, U
    Sudarsky, D
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) : 1309 - 1327
  • [35] Asymptotically flat, algebraically special spacetimes in higher dimensions
    Ortaggio, M.
    Pravda, V.
    Pravdova, A.
    PHYSICAL REVIEW D, 2009, 80 (08):
  • [36] C3 matching for asymptotically flat spacetimes
    Gutierrez-Pineres, Antonio C.
    Quevedo, Hernando
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (13)
  • [37] Motion of spinning particles in non asymptotically flat spacetimes
    Bobir Toshmatov
    Ozodbek Rahimov
    Bobomurat Ahmedov
    Daniele Malafarina
    The European Physical Journal C, 2020, 80
  • [38] On the meaning of various mass definitions for asymptotically flat spacetimes
    Vollick, Dan N.
    CANADIAN JOURNAL OF PHYSICS, 2023, 101 (01) : 9 - 16
  • [39] Holography and black holes in asymptotically flat FLRW spacetimes
    Rojo, Martin Enriquez
    Heckelbacher, Till
    PHYSICAL REVIEW D, 2021, 103 (10)
  • [40] The Poincare' structure and the centre-of-mass of asymptotically flat spacetimes
    Szabados, LB
    Analytical and Numerical Approaches to Mathematical Relativity, 2006, 692 : 157 - 184