High-temperature creep of magnetite and ilmenite single crystals

被引:0
|
作者
J. L. Till
E. Rybacki
机构
[1] Telegrafenberg,Deutsches GeoForschungsZentrum Helmholz Zentrum Potsdam
[2] University of Iceland,Institute of Earth Sciences
[3] University of Minnesota,Institute for Rock Magnetism
来源
关键词
Creep; Mineral physics; Fe-oxides; Experimental deformation;
D O I
暂无
中图分类号
学科分类号
摘要
We performed deformation experiments on dry natural single crystals of magnetite and ilmenite to determine the rheological behavior of these oxide minerals as a function of temperature, orientation, and oxygen fugacity. Samples were deformed at temperatures of 825–1150 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,^{\circ }$$\end{document}C to axial strains of up to 15–24% under approximately constant stress conditions up to 120 MPa in a dead-load-type creep rig at ambient pressure in a controlled gas atmosphere. Oxygen fugacity ranged from 10-9.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-9.4}$$\end{document} to 10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-4}$$\end{document} atm. Ilmenite creep was insensitive to oxygen fugacity, while magnetite displayed a strong, non-monotonic oxygen fugacity dependence, with creep rates varying as fO2-0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{-0.7}$$\end{document} and fO20.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{O_{2}}^{0.4}$$\end{document} at more reducing and more oxidizing conditions, respectively. Dislocation creep rates of magnetite single crystals were weakly dependent on crystallographic orientation with stress exponents that varied between 2.8 and 4.3 (mean 3.5 ± 0.4). Magnetite compressed parallel to <100>, <110>, and <111> axes exhibited apparent activation energies of 315±5, 345±30, and 290±5 kJ/mol, respectively. We estimated fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-independent magnetite activation energies of 715 ± 150, 725 ± 145, and 690 ± 150 kJ/mol for <100>, <110>, and <111> orientations, respectively, in the region of negative fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_O}_2$$\end{document}-dependence. Ilmenite single crystals were compressed parallel, normal, and inclined to the c-axis. Stress exponents of 3.4, 4.3, and 3.9 indicate dislocation creep with activation energies of 420 ± 35, 345 ± 30, and 360 ± 40 kJ/mol, respectively, for these orientations. Mechanical anisotropy in ilmenite is notably higher than in magnetite, as expected from its lower crystal symmetry. Constitutive equations were formulated for ilmenite and magnetite creep.
引用
收藏
相关论文
共 50 条
  • [41] Peculiarities of high-temperature plastic straining anisotropy in with NaCl type single crystals in creep conditions
    Matsokin, D. V.
    Pakhomova, I. N.
    Matsokin, V. P.
    FUNCTIONAL MATERIALS, 2005, 12 (04): : 652 - 657
  • [42] Mechanisms of high-temperature creep of fully stabilized zirconia single crystals as a function of the yttria content
    GomezGarcia, D
    MartinezFernandez, J
    DominguezRodriguez, A
    Castaing, J
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1997, 80 (07) : 1668 - 1672
  • [43] HIGH-TEMPERATURE CREEP OF OLIVINE SINGLE-CRYSTALS .2. DISLOCATION-STRUCTURES
    BAI, Q
    KOHLSTEDT, DL
    TECTONOPHYSICS, 1992, 206 (1-2) : 1 - 29
  • [44] HIGH-TEMPERATURE CREEP AND DISLOCATION-STRUCTURE OF MGO SINGLE-CRYSTALS AT LOW STRESSES
    RAMESH, KS
    YASUDA, E
    KIMURA, S
    URABE, K
    JOURNAL OF MATERIALS SCIENCE, 1986, 21 (11) : 4015 - 4018
  • [45] FORMATION AND GROWTH OF SURFACE RELIEF DURING HIGH-TEMPERATURE CREEP OF MOLYBDENUM SINGLE-CRYSTALS
    ZASIMCHUK, EE
    KASPRUK, EN
    PHYSICS OF METALS, 1982, 4 (04): : 789 - 801
  • [46] HIGH-TEMPERATURE CREEP OF OLIVINE CRYSTALS FROM 4 LOCALITIES
    JIN, ZM
    BAI, Q
    KOHLSTEDT, DL
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1994, 82 (01) : 55 - 64
  • [47] HIGH-TEMPERATURE CREEP OF OLIVINE SINGLE-CRYSTALS .3. MECHANICAL RESULTS FOR UNBUFFERED SAMPLES AND CREEP MECHANISMS
    BAI, Q
    KOHLSTEDT, DL
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1992, 66 (06): : 1149 - 1181
  • [48] Diffusion in High-temperature Piezoelectric Single Crystals
    Sauerwald, J.
    Schulz, M.
    Richter, D.
    Fritze, H.
    HIGH TEMPERATURE CORROSION AND MATERIALS CHEMISTRY 8, 2010, 25 (25): : 135 - 146
  • [49] HIGH-TEMPERATURE OXIDATION OF TANTALUM SINGLE CRYSTALS
    STRINGER, J
    JOURNAL OF THE LESS-COMMON METALS, 1967, 12 (04): : 301 - &
  • [50] High-temperature deformation of calcite single crystals
    Wang, ZC
    Bai, Q
    Dresen, G
    Wirth, R
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B9) : 20377 - 20390