A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species

被引:0
|
作者
Rui Peng
Xiao-Qiang Zhao
机构
[1] Jiangsu Normal University,Department of Mathematics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
关键词
Phytoplankton model; Periodicity; Reproduction number; Threshold dynamics; 35K57; 35B20; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document}. Then we derive various characterizations of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document} with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.
引用
收藏
页码:755 / 791
页数:36
相关论文
共 50 条
  • [41] Convective instability and boundary driven oscillations in a reaction-diffusion-advection model
    Vidal-Henriquez, Estefania
    Zykov, Vladimir
    Bodenschatz, Eberhard
    Gholami, Azam
    CHAOS, 2017, 27 (10)
  • [42] Traveling waves for a reaction-diffusion-advection predator-prey model
    Zhang, Tianran
    Jin, Yu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 36 : 203 - 232
  • [43] A reaction-diffusion-advection logistic model with a free boundary in heterogeneous environment
    Jianxiu Liang
    Lili Liu
    Zhen Jin
    Boundary Value Problems, 2016
  • [44] A Numerical Study of Traveling Wave Fronts for a Reaction-Diffusion-Advection Model
    Mansour, M. B. A.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) : 939 - 947
  • [45] PREVAILING WINDS AND SPRUCE BUDWORM OUTBREAKS: A REACTION-DIFFUSION-ADVECTION MODEL
    Anderson, Abby
    Vasilyeva, Olga
    MATHEMATICS IN APPLIED SCIENCES AND ENGINEERING, 2021, 2 (04): : 235 - 272
  • [46] Stability and bifurcation in a reaction-diffusion-advection predator-prey model
    Sun, Yihuan
    Chen, Shanshan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [47] Existence of the positive steady states of a reaction-diffusion-advection competition model
    Ma, Li
    Gao, Jianping
    Luo, Youquan
    Gan, Wenzhen
    APPLIED MATHEMATICS LETTERS, 2021, 119
  • [48] REACTION-DIFFUSION-ADVECTION SYSTEMS WITH DISCONTINUOUS DIFFUSION AND MASS CONTROL
    Fitzgibbon, William E.
    Morgan, Jeffrey J.
    Tang, Bao Q.
    Yin, Hong-Ming
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) : 6771 - 6803
  • [49] DYNAMICS OF A REACTION-DIFFUSION-ADVECTION MODEL FOR TWO COMPETING SPECIES (vol 32, pg 3841, 2012)
    Chen, Xinfu
    Lam, King-Yeung
    Lou, Yuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4989 - 4995
  • [50] A reaction-diffusion-advection logistic model with a free boundary in heterogeneous environment
    Liang, Jianxiu
    Liu, Lili
    Jin, Zhen
    BOUNDARY VALUE PROBLEMS, 2016,