The Bethe-Salpeter equation with fermions

被引:0
|
作者
G. V. Efimov
机构
[1] Bogoliubov Laboratory of Theoretical Physics,
[2] Joint Institute for Nuclear Research,undefined
来源
Few-Body Systems | 2007年 / 41卷
关键词
Continuous Spectrum; Nonrelativistic Limit; Scalar Meson; Fermion Propagator; Symmetric Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K0 + KI. The operator K0 with Tr K02 = ∞ is of the “fall at the center” potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel KI with Tr KI2 < ∞ is responsible for bound fermion-fermion states.
引用
收藏
页码:157 / 184
页数:27
相关论文
共 50 条
  • [21] NONRELATIVISTIC LIMIT OF A BETHE-SALPETER EQUATION
    WANDERS, G
    PHYSICAL REVIEW, 1956, 104 (06): : 1782 - 1783
  • [22] BETHE-SALPETER EQUATION IN MOMENTUM SPACE
    SAENGER, RM
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (12) : 2366 - &
  • [23] Confinement phenomenology in the Bethe-Salpeter equation
    Bhagwat, MS
    Pichowsky, MA
    Tandy, PC
    PHYSICAL REVIEW D, 2003, 67 (05):
  • [24] FREDHOLM METHOD FOR BETHE-SALPETER EQUATION
    GRAVESMORRIS, PR
    PHYSICAL REVIEW LETTERS, 1966, 16 (05) : 201 - +
  • [25] Glueballs from the Bethe-Salpeter equation
    Sanchis-Alepuz, Helios
    Fischer, Christian S.
    Kellermann, Christian
    von Smekal, Lorenz
    PHYSICAL REVIEW D, 2015, 92 (03):
  • [26] Tetraquarks from the bethe-salpeter equation
    Eichmann, Gernot
    Fischer, Christian S.
    Heupel, Walter
    Acta Physica Polonica B, Proceedings Supplement, 2015, 8 (02) : 425 - 432
  • [27] ON THE REDUNDANT SOLUTIONS OF THE BETHE-SALPETER EQUATION
    OHNUKI, Y
    TAKAO, Y
    UMEZAWA, H
    PROGRESS OF THEORETICAL PHYSICS, 1960, 23 (02): : 273 - 283
  • [28] CHARGE CONSERVATION IN THE BETHE-SALPETER EQUATION
    ALLCOCK, GR
    HOOTON, DJ
    NUOVO CIMENTO, 1958, 8 (04): : 590 - 598
  • [29] Energy spectrum of the Bethe-Salpeter equation
    Dorkin, SM
    Kaptari, LP
    Semikh, SS
    PHYSICS OF ATOMIC NUCLEI, 1997, 60 (10) : 1629 - 1642
  • [30] BETHE-SALPETER EQUATION AND GOLDSTEIN PROBLEM
    KEAM, RF
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) : 394 - &