Random band matrices in the delocalized phase, III: averaging fluctuations

被引:0
|
作者
Fan Yang
Jun Yin
机构
[1] University of Pennsylvania,Department of Statistics
[2] University of California,Department of Mathematics
[3] Los Angeles,undefined
来源
Probability Theory and Related Fields | 2021年 / 179卷
关键词
Random band matrices; Delocalization; Averaging fluctuations; Generalized resolvent; 60B20; 15B52; 82B44;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of symmetric or Hermitian random band matrices H=(hxy)x,y∈〚1,N〛d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=(h_{xy})_{x,y \in \llbracket 1,N\rrbracket ^d}$$\end{document} in any dimension d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}, where the entries are independent, centered random variables with variances sxy=E|hxy|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{xy}=\mathbb {E}|h_{xy}|^2$$\end{document}. We assume that sxy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{xy}$$\end{document} vanishes if |x-y|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x-y|$$\end{document} exceeds the band width W, and we are interested in the mesoscopic scale with 1≪W≪N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\ll W\ll N$$\end{document}. Define the generalized resolvent of H as G(H,Z):=(H-Z)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(H,Z):=(H - Z)^{-1}$$\end{document}, where Z is a deterministic diagonal matrix with entries Zxx∈C+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{xx}\in \mathbb {C}_+$$\end{document} for all x. Then we establish a precise high-probability bound on certain averages of polynomials of the resolvent entries. As an application of this fluctuation averaging result, we give a self-contained proof for the delocalization of random band matrices in dimensions d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}. More precisely, for any fixed d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, we prove that the bulk eigenvectors of H are delocalized in certain averaged sense if N≤W1+d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\le W^{1+\frac{d}{2}}$$\end{document}. This improves the corresponding results in He and Marcozzi (Diffusion profile for random band matrices: a short proof, 2018. arXiv:1804.09446) that imposed the assumption N≪W1+dd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{1+\frac{d}{d+1}}$$\end{document}, and the results in Erdős and Knowles (Ann Henri Poincaré12(7):1227–1319, 2011; Commun Math Phys 303(2): 509–554, 2011) that imposed the assumption N≪W1+d6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{1+\frac{d}{6}}$$\end{document}. For 1D random band matrices, our fluctuation averaging result was used in Bourgade et al. (J Stat Phys 174:1189–1221, 2019; Random band matrices in the delocalized phase, I: quantum unique ergodicity and universality, 2018. arXiv:1807.01559) to prove the delocalization conjecture and bulk universality for random band matrices with N≪W4/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ll W^{4/3}$$\end{document}.
引用
收藏
页码:451 / 540
页数:89
相关论文
共 50 条
  • [21] Orthogonal polynomials and fluctuations of random matrices
    Kusalik, Timothy
    Mingo, James A.
    Speicher, Roland
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 604 : 1 - 46
  • [22] Second order freeness and fluctuations of random matrices: II. Unitary random matrices
    Mingo, James A.
    Sniady, Piotr
    Speicher, Roland
    ADVANCES IN MATHEMATICS, 2007, 209 (01) : 212 - 240
  • [23] Fluctuations of empirical laws of large random matrices
    Cabanal-Duvillard, T
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (03): : 373 - 402
  • [24] Gaussian Fluctuations for Random Matrices with Correlated Entries
    Schenker, Jeffrey
    Schulz-Baldes, Hermann
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [25] Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices
    O'Rourke, Sean
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (06) : 1045 - 1066
  • [26] BULK EIGENVALUE FLUCTUATIONS OF SPARSE RANDOM MATRICES
    He, Yukun
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (06): : 2846 - 2879
  • [27] Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices
    Sean O’Rourke
    Journal of Statistical Physics, 2010, 138 : 1045 - 1066
  • [28] Fluctuations of eigenvalues for random Toeplitz and related matrices
    Liu, Dang-Zheng
    Sun, Xin
    Wang, Zheng-Dong
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 22
  • [29] LEVEL SPACING FOR BAND RANDOM MATRICES
    GRAMMATICOS, B
    RAMANI, A
    CAURIER, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24): : 5855 - 5862
  • [30] ON THE LEVEL DENSITY OF RANDOM BAND MATRICES
    BOGACHEV, LV
    MOLCHANOV, SA
    PASTUR, LA
    MATHEMATICAL NOTES, 1991, 50 (5-6) : 1232 - 1242