Fuzzy soft covering-based multi-granulation fuzzy rough sets and their applications

被引:0
|
作者
Mohammed Atef
Muhammad Irfan Ali
Tareq M. Al-shami
机构
[1] Menoufia University,Department of Mathematics and Computer Science, Faculty of Science
[2] Islamabad Model College for Girls F-6/2,Department of Mathematics
[3] Sana’a University,Department of Mathematics
来源
关键词
Fuzzy soft ; -neighborhood; Fuzzy soft covering-based optimistic multi-granulation fuzzy rough set; Fuzzy soft covering-based pessimistic multi-granulation fuzzy rough set; Fuzzy soft covering-based variable precision multi-granulation fuzzy rough set; MAGDM; 03E72; 03E20; 68U35; 65Z05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, with the aid of fuzzy soft β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-neighborhoods, we introduce fuzzy soft covering-based multi-granulation fuzzy rough set models. We examine some of the relevant properties of fuzzy soft covering based on optimistic, pessimistic, and variable precision multi-granulation fuzzy rough set models. Then, we give fuzzy soft coverings based on ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-optimistic and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {D}}$$\end{document}-optimistic (ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-pessimistic and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {D}}$$\end{document}-pessimistic) multi-granulation fuzzy rough sets from fuzzy soft measures. It also discusses the interactions between these forms of fuzzy soft coverings based on multi-granulation fuzzy rough sets. Eventually, we apply the proposed models for solving MAGDM problems. The effectiveness and feasibility of our approach are noted from the introduced comparisons between our method and some methods given in the previous studies.
引用
收藏
相关论文
共 50 条
  • [21] A class of covering-based fuzzy rough sets
    Zhu, William
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 7 - 11
  • [22] Multi-Granulation Picture Hesitant Fuzzy Rough Sets
    Mathew, Bibin
    Jacob John, Sunil
    Alcantud, Jose Carlos R.
    SYMMETRY-BASEL, 2020, 12 (03):
  • [23] Multi-granulation Fuzzy Rough Sets in a Fuzzy Tolerance Approximation Space
    Xu, Weihua
    Wang, Qiaorong
    Zhang, Xiantao
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2011, 13 (04) : 246 - 259
  • [24] A Study on Soft Multi-Granulation Rough Sets and Their Applications
    Ayub, Saba
    Mahmood, Waqas
    Shabir, Muhammad
    Koam, Ali N. A.
    Gul, Rizwan
    IEEE ACCESS, 2022, 10 : 115541 - 115554
  • [25] MULTI-GRANULATION GRADED COVERING ROUGH SETS
    Wang, Hong
    Hu, Qi-Jia
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOL. 2, 2015, : 742 - 747
  • [26] Covering-based rough fuzzy sets and binary relation
    Kozae, A. M.
    El-Sheikh, S. A.
    Mareay, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (02) : 1031 - 1038
  • [27] On some types of fuzzy covering-based rough sets
    Yang, Bin
    Hu, Bao Qing
    FUZZY SETS AND SYSTEMS, 2017, 312 : 36 - 65
  • [28] Optimistic Multi-granulation Fuzzy Rough Sets on Tolerance Relations
    Xu Weihua
    Wang Qiaorong
    Luo Shuqun
    2012 INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING (ISISE), 2012, : 299 - 302
  • [29] Fuzzy multi-granulation decision-theoretic rough sets based on fuzzy preference relation
    Mandal, Prasenjit
    Ranadive, A. S.
    SOFT COMPUTING, 2019, 23 (01) : 85 - 99
  • [30] Fuzzy multi-granulation decision-theoretic rough sets based on fuzzy preference relation
    Prasenjit Mandal
    A. S. Ranadive
    Soft Computing, 2019, 23 : 85 - 99