Optimization Methods for Mixed Integer Weakly Concave Programming Problems

被引:1
|
作者
Wu Z.-Y. [1 ,2 ]
Bai F.-S. [1 ]
Yang Y.-J. [3 ]
Jiang F. [1 ]
机构
[1] School of Mathematics, Chongqing Normal University, Chongqing
[2] School of Information Technology and Mathematical Sciences, Federation University Australia, Ballarat, VIC
[3] Department of Mathematics, Shanghai University, Shanghai
来源
Wu, Z.-Y. (zywu@cqnu.edu.cn) | 1600年 / Springer Science and Business Media Deutschland GmbH卷 / 02期
关键词
Global optimality conditions; Global optimization method; Local optimization method; Mixed integer weakly concave programming problems;
D O I
10.1007/s40305-014-0046-y
中图分类号
学科分类号
摘要
In this paper, we consider a class of mixed integer weakly concave programming problems (MIWCPP) consisting of minimizing a difference of a quadratic function and a convex function. A new necessary global optimality conditions for MIWCPP is presented in this paper. A new local optimization method for MIWCPP is designed based on the necessary global optimality conditions, which is different from the traditional local optimization method. A global optimization method is proposed by combining some auxiliary functions and the new local optimization method. Furthermore, numerical examples are also presented to show that the proposed global optimization method for MIWCPP is efficient. © 2014 Operations Research Society of China, Periodicals Agency of Shanghai University, and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:195 / 222
页数:27
相关论文
共 50 条
  • [21] An Improved Particle Swarm Optimization Algorithm For Solving Mixed Integer Programming Problems
    Jia, Chunhua
    Zhang, Yuping
    Zeng, Yong
    Yuan, Cheng
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [22] An exact penalty global optimization approach for mixed-integer programming problems
    S. Lucidi
    F. Rinaldi
    Optimization Letters, 2013, 7 : 297 - 307
  • [23] An exact penalty global optimization approach for mixed-integer programming problems
    Lucidi, S.
    Rinaldi, F.
    OPTIMIZATION LETTERS, 2013, 7 (02) : 297 - 307
  • [24] Improved particle swarm optimization algorithm for mixed integer nonlinear programming problems
    Li Hui-rong
    Gao Yue-lin
    MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 467-469 : 359 - +
  • [25] A new local and global optimization method for mixed integer quadratic programming problems
    Li, G. Q.
    Wu, Z. Y.
    Quan, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2501 - 2512
  • [26] Overview on Mixed Integer Nonlinear Programming Problems
    Fernandes, Florbela P.
    Costa, M. Fernanda P.
    Fernandes, Edite M. G. P.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1374 - +
  • [28] ALGORITHM FOR THE SOLUTION OF MIXED INTEGER PROGRAMMING PROBLEMS
    ZIONTS, S
    MANAGEMENT SCIENCE, 1968, 15 (01) : 113 - 115
  • [29] Mixed-integer bilinear programming problems
    Adams, Warren P.
    Sherali, Hanif D.
    Mathematical Programming, Series A, 1993, 59 (03): : 279 - 305
  • [30] Global Optimization of Integer and Mixed-Integer Bi-Level Programming Problems via Multi-Parametric Programming
    Dominguez, Luis F.
    Pistikopoulos, Efstatios N.
    10TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2009, 27 : 177 - 182