Local Functional Principal Component Analysis

被引:0
|
作者
André Mas
机构
[1] Université Montpelllier 2,Institut de Modélisation Mathématique de Montpellier, CC 051
来源
关键词
60F25; 47B25; 47B80; Statistics; functional data; covariance operator; small ball probability;
D O I
暂无
中图分类号
学科分类号
摘要
Covariance operators of random functions are crucial tools to study the way random elements concentrate over their support. The principal component analysis of a random function X is well-known from a theoretical viewpoint and extensively used in practical situations. In this work we focus on local covariance operators. They provide some pieces of information about the distribution of X around a fixed point of the space x0. A description of the asymptotic behaviour of the theoretical and empirical counterparts is carried out. Asymptotic developments are given under assumptions on the location of x0 and on the distributions of projections of the data on the eigenspaces of the (non-local) covariance operator.
引用
收藏
页码:135 / 167
页数:32
相关论文
共 50 条
  • [31] Computational considerations in functional principal component analysis
    Ocana, Francisco A.
    Aguilera, Ana M.
    Escabias, Manuel
    COMPUTATIONAL STATISTICS, 2007, 22 (03) : 449 - 465
  • [32] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    STAT, 2022, 11 (01):
  • [33] Functional principal component analysis of fMRI data
    Viviani, R
    Grön, G
    Spitzer, M
    HUMAN BRAIN MAPPING, 2005, 24 (02) : 109 - 129
  • [34] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [35] Unfold Principal Component Analysis and Functional Unfold Principal Component Analysis for Online Plant Stress Detection
    Baert, A.
    Villez, K.
    Steppe, K.
    IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 195 - 201
  • [36] Functional outlier detection with robust functional principal component analysis
    Pallavi Sawant
    Nedret Billor
    Hyejin Shin
    Computational Statistics, 2012, 27 : 83 - 102
  • [37] Functional outlier detection with robust functional principal component analysis
    Sawant, Pallavi
    Billor, Nedret
    Shin, Hyejin
    COMPUTATIONAL STATISTICS, 2012, 27 (01) : 83 - 102
  • [39] Nonlinear Fault Detection of Batch Processes Using Functional Local Kernel Principal Component Analysis
    He, Fei
    Zhang, Zhiyan
    IEEE ACCESS, 2020, 8 : 117513 - 117527
  • [40] Local and global principal component analysis for process monitoring
    Yu, Jianbo
    JOURNAL OF PROCESS CONTROL, 2012, 22 (07) : 1358 - 1373