Asymptotic Justification of the Kirchhoff–Love Assumptions for a Linearly Elastic Clamped Shell

被引:0
|
作者
Veronique Lods
Cristinel Mardare
机构
[1] Université Paris VI,Laboratoire d'Analyse Numérique, Tour 55
[2] Université Paris VI,Laboratoire d'Analyse Numérique, Tour 55
关键词
mechanics of solids; elasticity; asymptotic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The displacement vector of a linearly elastic shell can be computed by using the two-dimensional Koiter's model, based on the a priori Kirchhoff–Love assumptions. These hypotheses imply that the displacement of any point of the shell is an affine function of the transverse variable x3. The term independent of x3 of this approximation is equal to the displacement vector of the two-dimensional Koiter's model. The term linear in x3 depends on the infinitesimal rotation vector of the normal. After an appropriate scaling, we estimate here the difference between the three-dimensional displacement and this affine vector field in the case of shells clamped along their entire lateral face. Besides, in the case of shells with uniformly elliptic middle surface, taking into account the term depending of the rotation of the normal allows to improve the asymptotic estimate between the three-dimensionnal displacement and Koiter's bidimensional displacement.
引用
收藏
页码:105 / 154
页数:49
相关论文
共 50 条
  • [41] Asymptotic modeling of assemblies of thin linearly elastic plates
    Licht, Christian
    COMPTES RENDUS MECANIQUE, 2007, 335 (12): : 775 - 780
  • [42] Asymptotic analysis of linearly elastic shells: Convergence of the stresses
    Collard, C
    Miara, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (07): : 699 - 702
  • [43] Modal Synthesis with the Isogeometric Kirchhoff-Love Shell Elements
    Lei, Zhen
    Gillot, Frederic
    Jezequel, Louis
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (02)
  • [44] Isogeometric Kirchhoff-Love shell formulations for biological membranes
    Tepole, Adrian Buganza
    Kabaria, Hardik
    Bletzinger, Kai-Uwe
    Kuhl, Ellen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 328 - 347
  • [45] Kirchhoff–Love shell theory based on tangential differential calculus
    D. Schöllhammer
    T. P. Fries
    Computational Mechanics, 2019, 64 : 113 - 131
  • [46] ASYMPTOTIC AND NUMERICAL ANALYSIS OF THE EIGENVALUE PROBLEM FOR A CLAMPED CYLINDRICAL SHELL
    Da Veiga, L. Beirao
    Hakula, H.
    Pitkaeranta, J.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (11): : 1983 - 2002
  • [47] A Linearly Elastic Shell over an Obstacle: The Flexural Case
    Alain Léger
    Bernadette Miara
    Journal of Elasticity, 2018, 131 : 19 - 38
  • [48] A confinement problem for a linearly elastic Koiter's shell
    Ciarlet, Philippe G.
    Piersanti, Paolo
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 221 - 230
  • [49] A Linearly Elastic Shell over an Obstacle: The Flexural Case
    Leger, Alain
    Miara, Bernadette
    JOURNAL OF ELASTICITY, 2018, 131 (01) : 19 - 38
  • [50] An asymptotic expansion of the boundary-layer type for flexural waves along the curved edge of a Kirchhoff-Love elastic plate
    Cherednichenko K.D.
    Journal of Mathematical Sciences, 2007, 142 (6) : 2682 - 2688