Morphological transfer learning based brain tumor detection using YOLOv5

被引:0
|
作者
Sanat Kumar Pandey
Ashish Kumar Bhandari
机构
[1] National Institute of Technology Patna,Department of Electronics and Communication Engineering
来源
关键词
Deep learning; Transfer learning; Brain tumor; Brain tumor detection; YOLOv5;
D O I
暂无
中图分类号
学科分类号
摘要
Medical experts require an efficient tool that provides highly accurate diagnoses of patients for early and precise detection of the severity of brain tumours using brain magnetic resonance imaging (MRI). We propose a deep learning-based transfer learning technique that uses filtering methods on the test dataset to improve accuracy and performance efficiency. In this paper, we propose a morphological approach based on You Only Look Once, i.e., the YOLOv5 automated technique, to achieve accurate brain tumour findings. We also compare the proposed method in this manuscript to a number of well-known deep learning-based object detection frameworks and algorithms, such as AlexNet, ResNet-50, GoogleNet, MobileNet, VGG-16, YOLOv3 Pytorch, YOLOv4 Darknet, and YOLOv4-Tiny, and discover that the YOLOv5 model performs the best among them all. The RSNA-ASNR-MICCAI Brain Tumour Segmentation (BraTS21) Challenge 2021 dataset is used in this study to train the various models using a transfer learning methodology. Following thorough analysis, we discovered that the YOLOv5 model outperforms all other models taken into consideration with a mAP@ 0.5 score of 94.7%. With an MRI test dataset that had been morphologically filtered, it also improved to a mAP@ 0.5 score of 97.2%.
引用
收藏
页码:49343 / 49366
页数:23
相关论文
共 50 条
  • [31] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750
  • [32] Crack detection based on attention mechanism with YOLOv5
    Lan, Min-Li
    Yang, Dan
    Zhou, Shuang-Xi
    Ding, Yang
    ENGINEERING REPORTS, 2025, 7 (01)
  • [33] Driver Attention Detection Based on Improved YOLOv5
    Wang, Zhongzhou
    Yao, Keming
    Guo, Fuao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [34] Safety Helmet Detection Based on Optimized YOLOv5
    Fang, Jian
    Lin, Xiang
    Zhou, Fengxiang
    Tian, Yan
    Zhang, Min
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 117 - 121
  • [35] A Safety Vehicle Detection Mechanism Based on YOLOv5
    Huang, Yeting
    Zhang, Hancui
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2021), 2021, : 1 - 6
  • [36] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361
  • [37] Insulator Breakage Detection Based on Improved YOLOv5
    Han, Gujing
    He, Min
    Gao, Mengze
    Yu, Jinyun
    Liu, Kaipei
    Qin, Liang
    SUSTAINABILITY, 2022, 14 (10)
  • [38] Traffic Sign Detection Based on the Improved YOLOv5
    Zhang, Rongyun
    Zheng, Kunming
    Shi, Peicheng
    Mei, Ye
    Li, Haoran
    Qiu, Tian
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [39] Pedestrian detection method based on improved YOLOv5
    You, Shangtao
    Gu, Zhengchao
    Zhu, Kai
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [40] A Smoke Detection Model Based on Improved YOLOv5
    Wang, Zhong
    Wu, Lei
    Li, Tong
    Shi, Peibei
    MATHEMATICS, 2022, 10 (07)