Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction

被引:0
|
作者
Shan Lin
Hong Zheng
Bei Han
Yanyan Li
Chao Han
Wei Li
机构
[1] Beijing University of Technology,Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education
[2] Chinese Academy of Sciences,State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics
[3] Linyi University,School of Civil Engineering and Architecture
来源
Acta Geotechnica | 2022年 / 17卷
关键词
Classification; Ensemble learning; Machine learning (ML); Repeated cross-validation; Slope stability;
D O I
暂无
中图分类号
学科分类号
摘要
Slope engineering is a complex nonlinear system. It is difficult to respond with a high level of precision and efficiency requirements for stability assessment using conventional theoretical analysis and numerical computation. An ensemble learning algorithm for solving highly nonlinear problems is introduced in this paper to study the stability of 444 slope cases. Different ensemble learning methods [AdaBoost, gradient boosting machine (GBM), bagging, extra trees (ET), random forest (RF), hist gradient boosting, voting and stacking] for slope stability assessment are studied and compared to make the best use of the large variety of existing statistical and ensemble learning methods collected. Six potential relevant indicators, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, C, φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document}, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}, H and ru\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{u}$$\end{document}, are chosen as the prediction indicators. The tenfold CV method is used to improve the generalization ability of the classification models. By analysing the evaluation indicators AUC, accuracy, kappa value and log loss, the stacking model shows the best performance with the highest AUC (0.9452), accuracy (84.74%), kappa value (0.6910) and lowest log loss (0.3282), followed by ET, RF, GBM and bagging models. The analysis of engineering examples shows that the ensemble learning algorithm can deal with this relationship well and give accurate and reliable prediction results, which has good applicability for slope stability evaluation. Additionally, geotechnical material variables are found to be the most influential variables for slope stability prediction.
引用
收藏
页码:1477 / 1502
页数:25
相关论文
共 50 条
  • [41] An ensemble method based on weight voting method for improved prediction of slope stability
    Chen, Yumin
    Fu, Zhongling
    Yao, Xiaofei
    Han, Yi
    Li, Zhenxiong
    NATURAL HAZARDS, 2024, 120 (11) : 10395 - 10412
  • [42] Application of machine learning ensemble models for rainfall prediction
    Hasan Ahmadi
    Babak Aminnejad
    Hojat Sabatsany
    Acta Geophysica, 2023, 71 : 1775 - 1786
  • [43] Application of machine learning ensemble models for rainfall prediction
    Ahmadi, Hasan
    Aminnejad, Babak
    Sabatsany, Hojat
    ACTA GEOPHYSICA, 2023, 71 (04) : 1775 - 1786
  • [44] Freeway Travel Time Prediction Based on Ensemble Learning Approaches
    Chen, Zhen
    Fan, Wei
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2023: TRANSPORTATION SAFETY AND EMERGING TECHNOLOGIES, 2023, : 410 - 423
  • [45] Ensemble Learning Models for Food Safety Risk Prediction
    Wu, Li-Ya
    Weng, Sung-Shun
    SUSTAINABILITY, 2021, 13 (21)
  • [46] Ionospheric TEC Prediction Based on Ensemble Learning Models
    Zhou, Yang
    Liu, Jing
    Li, Shuhan
    Li, Qiaoling
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2024, 22 (03):
  • [47] Comparative analysis of thermal preference prediction performance in different conditions using ensemble learning models based on ASHRAE Comfort Database II
    Bai, Yan
    Liu, Kai
    Wang, Yuying
    BUILDING AND ENVIRONMENT, 2022, 223
  • [48] Comparative Approaches to Probabilistic Finite Element Methods for Slope Stability Analysis
    Dyson, Ashley P.
    Tolooiyan, Ali
    SIMULATION MODELLING PRACTICE AND THEORY, 2020, 100
  • [49] Enhancing prediction of landslide dam stability through AI models: A comparative study with traditional approaches
    Li, Xianfeng
    Nishio, Mayuko
    Sugawara, Kentaro
    Iwanaga, Shoji
    Shimada, Toru
    Kanasaki, Hiroyuki
    Kanai, Hiromichi
    Zheng, Shitao
    Chun, Pang-jo
    GEOMORPHOLOGY, 2024, 454
  • [50] Ensemble learning-based stability improvement method for feature selection towards performance prediction
    Xiang, Feng
    Zhao, Yulong
    Zhang, Meng
    Zuo, Ying
    Zou, Xiaofu
    Tao, Fei
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 74 (55-67) : 55 - 67