Binary partitions and binary partition polytopes

被引:0
|
作者
George E. Andrews
Jim Lawrence
机构
[1] Pennsylvania State University,Mathematics Department
[2] George Mason University,Department of Mathematical Sciences
来源
Aequationes mathematicae | 2017年 / 91卷
关键词
Primary 05A17; Secondary 52B05; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
This paper delves into the number of partitions of positive integers n into powers of 2 in which exactly m powers of 2 are used an odd number of times. The study of these numbers is motivated by their connections with the f-vectors of the binary partition polytopes.
引用
收藏
页码:859 / 869
页数:10
相关论文
共 50 条
  • [1] Binary partitions and binary partition polytopes
    Andrews, George E.
    Lawrence, Jim
    AEQUATIONES MATHEMATICAE, 2017, 91 (05) : 859 - 869
  • [2] Binary partitions revisited
    Rodseth, OJ
    Sellers, JA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 98 (01) : 33 - 45
  • [3] A Note on Binary Plane Partitions
    Discrete & Computational Geometry, 2003, 30 : 3 - 16
  • [4] Integer partitions and binary trees
    Schmidt, F
    ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (3-4) : 592 - 601
  • [5] Perfect binary space partitions
    deBerg, M
    deGroot, MM
    Overmars, MH
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (1-2): : 81 - 91
  • [6] A note on binary plane partitions
    Tóth, CD
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (01) : 3 - 16
  • [7] MASTER POLYTOPES FOR CYCLES OF BINARY MATROIDS
    GROTSCHEL, M
    TRUEMPER, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 : 523 - 540
  • [8] Optimal Binary Space Partitions in the Plane
    de Berg, Mark
    Khosravi, Amirali
    COMPUTING AND COMBINATORICS, 2010, 6196 : 216 - 225
  • [9] Binary Partitions with Approximate Minimum Impurity
    Laber, Eduardo S.
    Molinaro, Marco
    Pereira, Felipe de A. Mello
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [10] Circuit and cocircuit partitions of binary matroids
    Mphako E.G.
    Czechoslovak Mathematical Journal, 2006, 56 (1) : 19 - 25