Indices and c-vectors in extriangulated categories

被引:0
|
作者
Li Wang
Jiaqun Wei
Haicheng Zhang
机构
[1] Anhui Polytechnic University,School of Mathematics and Physics
[2] Nanjing Normal University,Institute of Mathematics, School of Mathematical Sciences
来源
Science China Mathematics | 2023年 / 66卷
关键词
extriangulated categories; cluster tilting subcategories; indices; -vectors; 18E05; 18E10; 17B37;
D O I
暂无
中图分类号
学科分类号
摘要
Let C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} be an extriangulated category and τ be any n-cluster tilting subcategory of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document}. We consider the index with respect to τ and introduce the index Grothendieck group of τ. Using the index, we prove that the index Grothendieck group of τ is isomorphic to the Grothendieck group of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document}, which implies that the index Grothendieck groups of any two n-cluster tilting subcategories are isomorphic. In particular, we show that the split Grothendieck groups of any two 2-cluster tilting subcategories are isomorphic. Then we develop a general framework for c-vectors of 2-Calabi-Yau extriangulated categories with respect to arbitrary 2-cluster tilting subcategories. We show that the c-vectors have the sign-coherence property and provide some formulas for calculating c-vectors.
引用
收藏
页码:1949 / 1964
页数:15
相关论文
共 50 条
  • [41] Proper resolutions and Gorensteinness in extriangulated categories
    Hu, Jiangsheng
    Zhang, Dondong
    Zhou, Panyue
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (01) : 95 - 117
  • [42] Ideal balanced pairs in extriangulated categories
    Rongrong Xu
    Xianhui Fu
    Science China(Mathematics), 2025, 68 (02) : 271 - 284
  • [43] Homotopy cartesian squares in extriangulated categories
    He, Jing
    Xie, Chenbei
    Zhou, Panyue
    OPEN MATHEMATICS, 2023, 21 (01): : 119 - 221
  • [44] Torsion pairs and recollements of extriangulated categories
    He, Jian
    Hu, Yonggang
    Zhou, Panyue
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (05) : 2018 - 2036
  • [45] Gorenstein Homological Dimensions for Extriangulated Categories
    Jiangsheng Hu
    Dongdong Zhang
    Panyue Zhou
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2235 - 2252
  • [46] Proper resolutions and Gorensteinness in extriangulated categories
    Jiangsheng Hu
    Dondong Zhang
    Panyue Zhou
    Frontiers of Mathematics in China, 2021, 16 : 95 - 117
  • [48] Relative Auslander Bijection in Extriangulated Categories
    Tiwei Zhao
    Acta Mathematica Sinica,English Series, 2025, (03) : 985 - 1014
  • [49] BALANCE OF COMPLETE COHOMOLOGY IN EXTRIANGULATED CATEGORIES
    Hu, Jiangsheng
    Zhang, Dongdong
    Zhao, Tiwei
    Zhou, Panyue
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05): : 3341 - 3359
  • [50] Silting objects and recollements of extriangulated categories
    Zhang, Zhen
    Wang, Shance
    AIMS MATHEMATICS, 2024, 9 (09): : 24796 - 24809