Let C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\cal C}$$\end{document} be an extriangulated category and τ be any n-cluster tilting subcategory of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\cal C}$$\end{document}. We consider the index with respect to τ and introduce the index Grothendieck group of τ. Using the index, we prove that the index Grothendieck group of τ is isomorphic to the Grothendieck group of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\cal C}$$\end{document}, which implies that the index Grothendieck groups of any two n-cluster tilting subcategories are isomorphic. In particular, we show that the split Grothendieck groups of any two 2-cluster tilting subcategories are isomorphic. Then we develop a general framework for c-vectors of 2-Calabi-Yau extriangulated categories with respect to arbitrary 2-cluster tilting subcategories. We show that the c-vectors have the sign-coherence property and provide some formulas for calculating c-vectors.
机构:
School of Mathematics-Physics and Finace, Anhui Polytechnic UniversitySchool of Mathematics-Physics and Finace, Anhui Polytechnic University
Li Wang
Jiaqun Wei
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics, School of Mathematical Sciences,Nanjing Normal UniversitySchool of Mathematics-Physics and Finace, Anhui Polytechnic University
Jiaqun Wei
Haicheng Zhang
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics, School of Mathematical Sciences,Nanjing Normal UniversitySchool of Mathematics-Physics and Finace, Anhui Polytechnic University
机构:
Univ Paris 07, CNRS, Inst Math Jussieu, UMR 7586, F-75205 Paris 13, FranceUniv Paris 07, CNRS, Inst Math Jussieu, UMR 7586, F-75205 Paris 13, France
机构:
Univ Paris 07, Inst Math Jussieu, CNRS, UMR 7586, F-75205 Paris 13, FranceUniv Paris 07, Inst Math Jussieu, CNRS, UMR 7586, F-75205 Paris 13, France
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R China
Wang, Li
Wei, Jiaqun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R China
Wei, Jiaqun
Zhang, Haicheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R China