Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine

被引:0
|
作者
Zaobao Liu
Jianfu Shao
Weiya Xu
Qier Wu
机构
[1] Hohai University,Geotechnical Research Institute
[2] University of Lille I,Laboratory of Mechanics of Lille
来源
Acta Geotechnica | 2015年 / 10卷
关键词
Estimation; Extreme learning machine; General regression neural network; Rock mechanics; Support vector machine; Unconfined compressive strength;
D O I
暂无
中图分类号
学科分类号
摘要
The unconfined compressive strength (UCS) of rocks, one fundamental parameter, is widely used in geotechnical engineering. Direct determination of the UCS involves expensive, time-consuming and destructive laboratory tests. These tests sometimes are difficult to be prepared for cracked rocks. In this way, indirect estimation of the UCS of rocks is widely discussed for simplicity and non-destructivity. Conventional methods for indirect estimation of the UCS of rocks are based on regression analysis which has poor accuracy or generalization ability. This paper presents the extreme learning machine (ELM) for indirect estimation of the UCS of rocks according to the correlated indexes including the mineral composition (calcite, clay, quartz, opaque minerals and biotile), specific density, dry unit weight, total porosity, effective porosity, slake durability index (fourth cycle), P-wave velocity in dry samples and in the solid part of the sample. The correlation between the UCS of rocks and each related index is studied by linear regression analysis. Based on this, the ELM approach is implemented for estimation of the UCS of rocks by comparison with other neural networks and the support vector machines (SVM). Also, parameter sensitivity is investigated on the predictive performance of the ELM by two target functions. The results turn out that the ELM is advantageous to the mentioned neural networks and the SVM in the estimation of the UCS of rocks. The ELM performs fast and has good generalization ability. It is a potential robust method for approaching complex, nonlinear problems in geotechnical engineering.
引用
收藏
页码:651 / 663
页数:12
相关论文
共 50 条
  • [11] Evaluation of the unconfined compressive strength of rocks using nail guns
    Selcuk, Levent
    Kayabali, Karnil
    ENGINEERING GEOLOGY, 2015, 195 : 164 - 171
  • [12] Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks
    Hassan, Mohamed Yusuf
    Arman, Hasan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [13] Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks
    Mohamed Yusuf Hassan
    Hasan Arman
    Scientific Reports, 12
  • [14] Application of Generalized Regression Neural Networks in Predicting the Unconfined Compressive Strength of Carbonate Rocks
    Ceryan, Nurcihan
    Okkan, Umut
    Kesimal, Ayhan
    ROCK MECHANICS AND ROCK ENGINEERING, 2012, 45 (06) : 1055 - 1072
  • [15] Application of Generalized Regression Neural Networks in Predicting the Unconfined Compressive Strength of Carbonate Rocks
    Nurcihan Ceryan
    Umut Okkan
    Ayhan Kesimal
    Rock Mechanics and Rock Engineering, 2012, 45 : 1055 - 1072
  • [16] Estimating unconfined compressive strength using a hybrid model of machine learning and metaheuristic algorithms
    Li, Ting
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [17] The unconfined compressive strength estimation of rocks using a novel hybridization technique based on the regulated Gaussian processor
    Huang, Linhua
    Li, Song
    Guo, Enping
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [18] Prediction of Uniaxial Compressive Strength in Rocks Based on Extreme Learning Machine Improved with Metaheuristic Algorithm
    Qiu, Junbo
    Yin, Xin
    Pan, Yucong
    Wang, Xinyu
    Zhang, Min
    MATHEMATICS, 2022, 10 (19)
  • [19] Unconfined compressive strength prediction of rock materials based on machine learning
    Niu, Lihong
    Cui, Qiang
    Luo, Jiangyun
    Huang, Hongbing
    Zhang, Jing
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [20] Estimating unconfined compressive strength and Young's modulus of carbonate rocks from petrophysical properties
    Hadi, Farqad
    Nygaard, Runar
    PETROLEUM SCIENCE AND TECHNOLOGY, 2023, 41 (13) : 1367 - 1389