Applications of thermodynamical modeling in molecular beam epitaxy of CdxHg1-xTe

被引:0
|
作者
T. Colin
T. Skauli
机构
[1] Norwegian Defence Research Establishment,Division for Electronics
来源
关键词
Condensation and re-evaporation coefficients; HgCdTe; molecular beam epitaxy (MBE); Te-rich phase boundary; thermodynamic prediction of optimal growth temperature;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that the crystalline quality of CdxHg1-xTe grown by molecular beam epitaxy is critically dependent on the substrate temperature. The optimal growth temperature has been identified immediately below the crossing of the Te-rich phase boundary, that is just below the temperature range where Te precipitation occurs in the layer. It is potentially very useful to be able to predict the optimal temperature and its variation with other growth parameters, but no general guidelines for this can be found in the literature. We have studied experimentally the variation of the optimal growth temperature with Hg flux, Cd mole fraction and growth rate. These results are compared with a thermodynamical model published previously by Gailliard. We find that the modeled position of the phase boundary coincides well with the observed variations in optimal growth temperature for growth on Te-terminated surfaces, within the uncertainties of available thermodynamical constants. We show that the optimal substrate temperature depends mainly on the Hg flux and Cd mole fraction, while the dependence on growth rate can be neglected in practical molecular beam epitaxy conditions. The experimental observation of optimal layer quality at the phase boundary could suggest the existence of an adsorbed layer of Te, acting as a reservoir for Te atoms and reducing the supersaturation of the growth reaction. Simultaneous growth on the (211)B and (100) orientations reveals a clear, although not very large, difference in optimal growth temperature and Cd incorporation, indicating a difference in growth kinetics. This can be accounted for in the thermodynamical model by condensation and evaporation coefficients.
引用
收藏
页码:688 / 696
页数:8
相关论文
共 50 条
  • [21] FERMI LEVEL IN CDXHG1-XTE
    SIERANSKI, K
    SZATKOWSKI, J
    PAWLIKOWSKI, JM
    MAJCHROWSKA, E
    PLACZEKPOPKO, E
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1977, 81 (01): : K67 - K70
  • [22] BULK VACANCIES IN CDXHG1-XTE
    SWARTS, CA
    DAW, MS
    MCGILL, TC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1982, 21 (01): : 198 - 200
  • [23] INDIUM MIGRATION IN CDXHG1-XTE
    GORSHKOV, AV
    ZAITOV, FA
    SHALYAPINA, GM
    SHANGIN, SB
    FIZIKA TVERDOGO TELA, 1983, 25 (09): : 2662 - 2666
  • [24] LATEST DEVELOPMENTS IN THE GROWTH OF CDXHG1-XTE AND CDTE-HGTE SUPER-LATTICES BY MOLECULAR-BEAM EPITAXY
    FAURIE, JP
    MILLION, A
    BOCH, R
    TISSOT, JL
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1983, 1 (03): : 1593 - 1597
  • [25] ELECTROREFLECTANCE STUDY OF CDXHG1-XTE
    MORITANI, A
    TANIGUCHI, K
    HAMAGUCHI, C
    NAKAI, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (01) : 79 - 88
  • [26] MAGNETIC SUSCEPTIBILITY OF CDXHG1-XTE
    IVANOVOM.VI
    KOLOMIET.BT
    OGORODNI.VK
    SMEKALOV.KP
    TSMOTS, VM
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1972, 14 (01): : 51 - 58
  • [27] ELECTROREFLECTANCE MEASUREMENTS ON CDXHG1-XTE
    MORITANI, A
    TANIGUCHI, K
    HAMAGUCHI, C
    NAKAI, J
    UEDA, R
    OHTSUKI, O
    UEDA, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1971, 31 (03) : 945 - +
  • [28] Photoluminescence from CdxHg1-xTe
    Breivik, M.
    Selvig, E.
    Tonheim, C. R.
    Brendhagen, E.
    Brudevoll, T.
    van Rheenen, A. D.
    Steen, H.
    Nicolas, S.
    Lorentzen, T.
    Haakenaasen, R.
    PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, 100
  • [29] MICROHARDNESS AND POLARITY IN CDXHG1-XTE
    BARBOT, JF
    RIVAUD, G
    DESOYER, JC
    JOURNAL OF MATERIALS SCIENCE, 1988, 23 (05) : 1655 - 1659
  • [30] TYPE CONVERSION OF CDXHG1-XTE GROWN BY LIQUID-PHASE EPITAXY
    DUTTON, DT
    OKEEFE, E
    CAPPER, P
    JONES, CL
    MUGFORD, S
    ARD, C
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (01) : S266 - S269