Heterologous expression of the metallothionein PpMT2 gene from Physcomitrella patens confers enhanced tolerance to heavy metal stress on transgenic Arabidopsis plants

被引:0
|
作者
Yue Liu
Tao Kang
Jie-shan Cheng
Yan-jun Yi
Jun-jie Han
Hai-long Cheng
Qi Li
Na Tang
Mei-xia Liang
机构
[1] Qingdao University,College of Life Sciences
[2] Ludong University,College of Agriculture
[3] Qingdao Agricultural University,College of Life Sciences
[4] Plants in Universities of Shandong (Ludong University),Key Laboratory of Molecular Module
[5] Yantai Academy of Agricultural Sciences,Based Breeding of High Yield and Abiotic Resistant
来源
Plant Growth Regulation | 2020年 / 90卷
关键词
Arabidopsis; Heavy metal stress; Metallothionein; Transgenic plant;
D O I
暂无
中图分类号
学科分类号
摘要
Metallothioneins (MTs) play essential roles in plant resistance to heavy metal stress, as well as in the scavenging of reactive oxygen species. A number of metallothionein genes in angiosperm have been identified. However, their functions in Physcomitrella patens are still largely unknown. In this work, the function of PpMT2, a metallothionein encoding gene from Physcomitrella patens, was investigated. Sequence alignment and phylogenetic analyses demonstrated that PpMT2 encoded a metallothionein with conserved sequences as other MTs from Arabidopsis, rice, soybean, black nightshade, sedum and poke weed. RT-PCR analyses revealed that PpMT2 was strongly induced by CuSO4 and CdCl2 in Physcomitrella patens. Heterologous expression of PpMT2 led to improved tolerance to high concentrations of CuSO4 and CdCl2 in both Y2HGold yeast cells and transgenic Arabidopsis plants. These findings suggest that PpMT2 is involved in heavy metal stress responses in Physcomitrella patens, and could be used as a potential candidate gene for the genetic engineering of plants with improved resistance to heavy metal stress.
引用
收藏
页码:63 / 72
页数:9
相关论文
共 50 条
  • [21] Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis
    Xinguo Mao
    Dongsheng Jia
    Ang Li
    Hongying Zhang
    Shanjun Tian
    Xiaoke Zhang
    Jizeng Jia
    Ruilian Jing
    Functional & Integrative Genomics, 2011, 11
  • [22] A Cloned Gene HuBADH from Hylocereus undatus Enhanced Salt Stress Tolerance in Transgenic Arabidopsis thaliana Plants
    Qu, Yujie
    Bian, Zhan
    Teixeira da Silva, Jaime A.
    Nong, Quandong
    Qu, Wenran
    Ma, Guohua
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (04):
  • [23] Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants
    Jain, Mukesh
    Tyagi, Akhilesh K.
    Khurana, Jitendra P.
    FEBS JOURNAL, 2006, 273 (23) : 5245 - 5260
  • [24] Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenic Arabidopsis plants
    Mukesh Jain
    Akhilesh K. Tyagi
    Jitendra P. Khurana
    Plant Cell Reports, 2008, 27 : 767 - 778
  • [25] Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenic Arabidopsis plants
    Jain, Mukesh
    Tyagi, Akhilesh K.
    Khurana, Jitendra P.
    PLANT CELL REPORTS, 2008, 27 (04) : 767 - 778
  • [26] Ectopic expression of ibPDS gene enhanced tolerance to oxidative stress in transgenic tobacco plants
    Seo, Sang-Gyu
    Jang, Hae-Rim
    Shin, Ji-Min
    Jun, Byung Ki
    Shim, Ie-Sung
    Kim, Sun-Hyung
    PLANT GROWTH REGULATION, 2015, 77 (02) : 245 - 253
  • [27] Ectopic expression of ibPDS gene enhanced tolerance to oxidative stress in transgenic tobacco plants
    Sang-Gyu Seo
    Hae-Rim Jang
    Ji-Min Shin
    Byung Ki Jun
    Ie-Sung Shim
    Sun-Hyung Kim
    Plant Growth Regulation, 2015, 77 : 245 - 253
  • [28] Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean
    Seo, Jun Sung
    Sohn, Hwang Bae
    Noh, Kaeyoung
    Jung, Choonkyun
    An, Ju Hee
    Donovan, Christopher M.
    Somers, David A.
    Kim, Dae In
    Jeong, Soon-Chun
    Kim, Chang-Gi
    Kim, Hwan Mook
    Lee, Suk-Ha
    Choi, Yang Do
    Moon, Tae Wha
    Kim, Chung Ho
    Cheong, Jong-Joo
    MOLECULAR BREEDING, 2012, 29 (03) : 601 - 608
  • [29] Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase
    Yasuo Alia
    Atsushi Kondo
    Hideko Sakamoto
    Hidenori Nonaka
    P. Pardha Hayashi
    Tony H.H. Saradhi
    Norio Chen
    Plant Molecular Biology, 1999, 40 : 279 - 288
  • [30] Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase
    Alia
    Kondo, Y
    Sakamoto, A
    Nonaka, H
    Hayashi, H
    Saradhi, PP
    Chen, THH
    Murata, N
    PLANT MOLECULAR BIOLOGY, 1999, 40 (02) : 279 - 288