Low-temperature selective catalytic reduction of NO with NH3 based on MnOx-CeOx/ACFN

被引:4
|
作者
Shen B. [1 ]
Liu T. [1 ]
Shi Z. [1 ]
Shi J. [1 ]
Yang T. [1 ]
Zhao N. [1 ]
机构
[1] College of Environmental Science and Engineering, Nankai University
来源
基金
中国国家自然科学基金;
关键词
Low-temperature SCR; Mesopore fraction; MnO[!sub]x[!/sub]-CeO[!sub]x[!/sub]/ACFN; NO conversion; Oxygen functional group;
D O I
10.1007/s11705-008-0053-9
中图分类号
学科分类号
摘要
MnOx-CeOx/ACFN were prepared by the impregnation method and used as catalyst for selective catalytic reduction of NO with NH3 at 80°C-150°C. The catalyst was characterized by N2 -BET, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The fraction of the mesopore and the oxygen functional groups on the surface of activated carbon fiber (ACF) increased after the treatment with nitric acid, which was favorable to improve the catalytic activities of MnOx-CeOx/ACFN. The experimental results show that the conversion of NO is nearly 100% in the range 100°C-150°C under the optimal preparation conditions of MnOx-CeOx/ACFN. In addition, the effects of a series of performance parameters, including initial NH3 concentration, NO concentration and O2 concentration, on the conversion of NO were studied. © Higher Education Press and Springer-Verlag GmbH 2008.
引用
收藏
页码:325 / 329
页数:4
相关论文
共 50 条
  • [31] Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods
    Li, Yi
    Li, Yanping
    Wang, Pengfei
    Hu, Wenping
    Zhang, Suge
    Shi, Qiang
    Zhan, Sihui
    Chemical Engineering Journal, 2017, 330 : 213 - 222
  • [32] Manganese oxide nanorod catalysts for low-temperature selective catalytic reduction of NO with NH3
    Wang, Yifan
    Wang, Yanli
    Kong, Zhenkai
    Kang, Ying
    Zhan, Liang
    RSC ADVANCES, 2022, 12 (27) : 17182 - 17189
  • [33] Low-temperature Selective Catalytic Reduction of NO with NH3 over CuOx/CNTs Catalyst
    Ren, B. N.
    1ST INTERNATIONAL WORKSHOP ON MATERIALS SCIENCE AND MECHANICAL ENGINEERING, 2017, 281
  • [34] Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3
    Husnain, Naveed
    Wang, Enlu
    Li, Kai
    Anwar, Muhammad Tuoqeer
    Mehmood, Aamir
    Gul, Mustabshirha
    Li, Deli
    Mao, Jinda
    REVIEWS IN CHEMICAL ENGINEERING, 2019, 35 (02) : 239 - 264
  • [35] Fabrication of porous MnOx-FeOx nanoneedles for the selective catalytic reduction of NOx by NH3 at low temperature
    Fan, Zhaoyang
    Shi, Dian-wen
    Niu, Chunming
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [36] Low Temperature Selective Catalytic Reduction of NOx with NH3 over MnOx/TiO2 Catalyst
    Xie Junlin
    Fu Zhengbing
    He Feng
    Fang De
    PROGRESS IN ENVIRONMENTAL PROTECTION AND PROCESSING OF RESOURCE, PTS 1-4, 2013, 295-298 : 364 - 369
  • [37] MnOx/Ce0.6Zr0.4O2 Catalysts for Low-Temperature Selective Catalytic Reduction of NOx with NH3
    Shen, Boxiong
    Liu, Ting
    Yang, Xiaoyan
    Zhao, Ning
    ENVIRONMENTAL ENGINEERING SCIENCE, 2011, 28 (04) : 291 - 298
  • [38] Mechanism and Enhancement of the Low-Temperature Selective Catalytic Reduction of NOx with NH3 by Bifunctional Catalytic Mixtures
    Hu, Wenshuo
    Zou, Renzhi
    Dong, Yi
    Zhang, Yu
    Ran, Mingchu
    Xin, Qi
    Yang, Yang
    Song, Hao
    Wu, Weihong
    Liu, Shaojun
    Zheng, Chenghang
    Gao, Xiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (18) : 6446 - 6454
  • [39] Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction of NOx with NH3
    Shen Boxiong
    Yao Yan
    Chen Jianhong
    Zhang Xiaopeng
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 180 : 262 - 269
  • [40] MnOx Supported on Hierarchical SAPO-34 for the Low-Temperature Selective Catalytic Reduction of NO with NH3: Catalytic Activity and SO2 Resistance
    Zhou, Lusha
    Guan, Jinkun
    Yu, Chenglong
    Huang, Bichun
    CATALYSTS, 2021, 11 (03) : 1 - 17