On the Lyapunov Exponent of a Multidimensional Stochastic Flow

被引:0
|
作者
Michele Baldini
机构
[1] Merrill Lynch,
[2] Global Equity Linked Products,undefined
来源
关键词
Diffusion; Stochastic flow; Recurrence; Superharmonic function; Elliptic operator;
D O I
暂无
中图分类号
学科分类号
摘要
Let Xt be a reversible and positive recurrent diffusion in ℝd described by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{t}=x+\sigma\,b(t)+\int_{0}^{t}m(X_{s})\mathrm {d}s,$$\end{document} where the diffusion coefficient σ is a positive-definite matrix and the drift m is a smooth function. Let Xt(A) denote the image of a compact set A⊂ℝd under the stochastic flow generated by Xt. If the divergence of the drift is strictly negative, there exists a set of functions u such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim_{t\to\infty}\int_{\ensuremath {X_{t}}(A)}\ensuremath {u}(x)\mathrm {d}x=0\quad\mbox{a.s.}$$\end{document} A characterization of the functions u is provided, as well as lower and upper bounds for the exponential rate of convergence.
引用
收藏
页码:327 / 337
页数:10
相关论文
共 50 条
  • [11] Calculation of Lyapunov exponent using an equivalent stochastic system
    Datta, S
    Bhattacharjee, JK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (44): : L603 - L608
  • [12] Moment Lyapunov Exponent for a Three Dimensional Stochastic System
    Li, Shenghong
    Liu, Xianbin
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS AND CONTROL, 2011, 29 : 191 - 200
  • [13] The Lyapunov exponent of the Euler scheme for stochastic differential equations
    Talay, D
    STOCHASTIC DYNAMICS, 1999, : 241 - 258
  • [14] Lyapunov exponent and entropy of the solar wind flow
    Redaelli, S
    Macek, WM
    PLANETARY AND SPACE SCIENCE, 2001, 49 (12) : 1211 - 1218
  • [15] The maximal Lyapunov exponent for a three-dimensional stochastic system
    Yang, Jianhua
    Liu, Xianbin
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (03): : 521 - 528
  • [16] The maximal Lyapunov exponent for a three-dimensional stochastic system
    Liew, KM
    Liu, XB
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2004, 71 (05): : 677 - 690
  • [17] The moment Lyapunov exponent for a three-dimensional stochastic system
    Li, Xuan
    Liu, Xianbin
    CHAOS SOLITONS & FRACTALS, 2014, 68 : 40 - 47
  • [18] Two-dimension Lyapunov exponent of the stochastic model on HAB nonlinear stochastic dynamics
    Xu, Jia
    Wang, Hongli
    Ge, Gen
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 88 - 91
  • [19] On the influence of noise on the largest Lyapunov exponent of attractors of stochastic dynamic systems
    Argyris, J
    Andreadis, I
    CHAOS SOLITONS & FRACTALS, 1998, 9 (06) : 959 - 963
  • [20] The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series
    Whang, YJ
    Linton, O
    JOURNAL OF ECONOMETRICS, 1999, 91 (01) : 1 - 42