A Note on Chow Stability of the Projectivization of Gieseker Stable Bundles

被引:0
|
作者
Julien Keller
Julius Ross
机构
[1] University of Provence,DPMMS
[2] University of Cambridge,undefined
来源
关键词
Algebraic geometry; Geometric invariant theory; Constant scalar curvature Kähler metrics;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate Chow stability of projective bundles ℙ(E), where E is a strictly Gieseker stable bundle over a base manifold that has constant scalar curvature. We show that, for suitable polarizations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{L}$\end{document}, the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb{P}(E),\mathcal{L})$\end{document} is Chow stable and give examples for which it is not asymptotically Chow stable.
引用
收藏
页码:1526 / 1546
页数:20
相关论文
共 50 条