We investigate Chow stability of projective bundles ℙ(E), where E is a strictly Gieseker stable bundle over a base manifold that has constant scalar curvature. We show that, for suitable polarizations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{L}$\end{document}, the pair \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(\mathbb{P}(E),\mathcal{L})$\end{document} is Chow stable and give examples for which it is not asymptotically Chow stable.