Instantons, Monopoles and Toric HyperKähler Manifolds

被引:0
|
作者
Thomas C. Kraan
机构
[1] Instituut-Lorentz for Theoretical Physics,
[2] University of Leiden,undefined
[3] PO Box 9506,undefined
[4] 2300 RA Leiden,undefined
[5] The Netherlands. E-mail: tckraan@lorentz.leidenuniv.nl,undefined
来源
关键词
Manifold; Modulus Space; Gauge Invariance; Temporal Position; Alternative Construction;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the metric on the moduli space of the k=1 SU(n) periodic instanton – or caloron – with arbitrary gauge holonomy at spatial infinity is explicitly constructed. The metric is toric hyperKähler and of the form conjectured by Lee and Yi. The torus coordinates describe the residual U(1)n−1 gauge invariance and the temporal position of the caloron and can also be viewed as the phases of n monopoles that constitute the caloron. The (1,1,...,1) monopole is obtained as a limit of the caloron. The calculation is performed on the space of Nahm data, which is justified by proving the isometric property of the Nahm construction for the cases considered. An alternative construction using the hyperKähler quotient is also presented. The effect of massless monopoles is briefly discussed.
引用
收藏
页码:503 / 533
页数:30
相关论文
共 50 条
  • [31] On toric locally conformally Kähler manifolds
    Farid Madani
    Andrei Moroianu
    Mihaela Pilca
    Annals of Global Analysis and Geometry, 2017, 51 : 401 - 417
  • [32] Extremal K?hler Metrics of Toric Manifolds
    An-Min LI
    Li SHENG
    ChineseAnnalsofMathematics,SeriesB, 2023, (06) : 827 - 836
  • [33] Moduli spaces of instantons on toric noncommutative manifolds
    Brain, Simon
    Landi, Giovanni
    van Suijlekom, Walter D.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 17 (05) : 1129 - 1193
  • [34] Finiteness of Klein actions and real structures on compact hyperkähler manifolds
    Andrea Cattaneo
    Lie Fu
    Mathematische Annalen, 2019, 375 : 1783 - 1822
  • [35] On the Hyperkähler/Quaternion Kähler Correspondence
    Nigel Hitchin
    Communications in Mathematical Physics, 2013, 324 : 77 - 106
  • [36] Global properties of toric nearly Kähler manifolds
    Kael Dixon
    Annals of Global Analysis and Geometry, 2021, 59 : 245 - 261
  • [37] A bound on the second Betti number of hyperkähler manifolds of complex dimension six
    Justin Sawon
    European Journal of Mathematics, 2022, 8 : 1196 - 1212
  • [38] Hyper-Lagrangian submanifolds of Hyperkähler manifolds and mean curvature flow
    Naichung Conan Leung
    Tom Y. H. Wan
    The Journal of Geometric Analysis, 2007, 17 : 343 - 364
  • [39] Examples of Non-Rigid, Modular Vector Bundles on Hyperkähler Manifolds
    Fatighenti, Enrico
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (10) : 8782 - 8793
  • [40] The semi-chiral quotient, hyperkähler manifolds and T-duality
    P. Marcos Crichigno
    Journal of High Energy Physics, 2012