Instantons, Monopoles and Toric HyperKähler Manifolds

被引:0
|
作者
Thomas C. Kraan
机构
[1] Instituut-Lorentz for Theoretical Physics,
[2] University of Leiden,undefined
[3] PO Box 9506,undefined
[4] 2300 RA Leiden,undefined
[5] The Netherlands. E-mail: tckraan@lorentz.leidenuniv.nl,undefined
来源
关键词
Manifold; Modulus Space; Gauge Invariance; Temporal Position; Alternative Construction;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the metric on the moduli space of the k=1 SU(n) periodic instanton – or caloron – with arbitrary gauge holonomy at spatial infinity is explicitly constructed. The metric is toric hyperKähler and of the form conjectured by Lee and Yi. The torus coordinates describe the residual U(1)n−1 gauge invariance and the temporal position of the caloron and can also be viewed as the phases of n monopoles that constitute the caloron. The (1,1,...,1) monopole is obtained as a limit of the caloron. The calculation is performed on the space of Nahm data, which is justified by proving the isometric property of the Nahm construction for the cases considered. An alternative construction using the hyperKähler quotient is also presented. The effect of massless monopoles is briefly discussed.
引用
收藏
页码:503 / 533
页数:30
相关论文
共 50 条
  • [1] Instantons on hyperkähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 533 - 561
  • [2] Hyperkähler cones and instantons on quaternionic Kähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annals of Global Analysis and Geometry, 2020, 58 : 291 - 323
  • [3] Instantons, monopoles and toric hyperKahler manifolds
    Kraan, TC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) : 503 - 533
  • [4] K-Theory of Toric HyperKähler Manifolds
    V. Uma
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1 - 10
  • [5] Equivariant cohomology distinguishes the geometric structures of toric hyperkähler manifolds
    Shintarô Kuroki
    Proceedings of the Steklov Institute of Mathematics, 2011, 275 : 251 - 283
  • [6] Parabolic automorphisms of hyperkähler manifolds
    Amerik, Ekaterina
    Verbitsky, Misha
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 232 - 252
  • [7] Compact hyperkähler manifolds: basic results
    Daniel Huybrechts
    Inventiones mathematicae, 2003, 152 : 209 - 212
  • [8] Compact hyperkähler manifolds: basic results
    Daniel Huybrechts
    Inventiones mathematicae, 1999, 135 : 63 - 113
  • [9] Properties of Hyperkähler Manifolds and Their Twistor Spaces
    Ulf Lindström
    Martin Roček
    Communications in Mathematical Physics, 2010, 293 : 257 - 278
  • [10] Deformations of trianalytic subvarieties of hyperkähler manifolds
    Verbitsky M.
    Selecta Mathematica, 1998, 4 (3) : 447 - 490