Prediction Model of Sulfide Capacity for CaO-FeO-Fe2O3-Al2O3-P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

被引:0
|
作者
Xue-Min Yang
Jin-Yan Li
Meng Zhang
Guo-Min Chai
Jian Zhang
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering
[2] University of Science and Technology Beijing,School of Metallurgical and Ecological Engineering
[3] Chinese Academy of Sciences,Institute of Process Engineering
[4] China Metallurgical Group Corporation,Beijing Metallurgical Equipment Research & Design Institute Company Limited
[5] Shanxi Taigang Stainless Steel Corporation Limited,undefined
关键词
Sulfide Capacity; Large Variation Range; Molecule Coexistence Theory; Activator Mass Concentration; Desulfurization Mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
A thermodynamic model for predicting sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential pO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p_{{{\text{O}}_{ 2}}} $$\end{document} corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model has been verified through comparing the determined sulfide capacity CS2-,determined\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ determined}}}} $$\end{document} after Ban-ya et al.[20] with the calculated CS2-,calculatedIMCT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{\text{IMCT}} $$\end{document} by the developed IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model and the calculated CS2-,calculatedi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{i} $$\end{document} by the reported sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration NFetO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{t} {\text{O}}}} $$\end{document} of FetO as 0.0637 or oxygen partial pO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p_{{{\text{O}}_{2} }} $$\end{document} as 2.27 × 10−6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of NFeO/NCaO, NFe2O3/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{ 2} {\text{O}}_{ 3} }} /N_{\text{CaO}} $$\end{document}, NFeO·Fe2O3/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{FeO}} \cdot {\text{Fe}}_{2} {\text{O}}_{3} }} /N_{\text{CaO}} $$\end{document}, and NFetO/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{t} {\text{O}}}} /N_{\text{CaO}} $$\end{document}. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags.
引用
收藏
页码:2118 / 2137
页数:19
相关论文
共 50 条
  • [31] Gold Solubility in CaO-SiO2-Al2O3-Fe2O3 Slags
    Jun Gil Yang
    Joo Ho Park
    Ji Yeon Kang
    Hyun Sik Park
    Joo Hyun Park
    JOM, 2021, 73 : 688 - 693
  • [32] Gold Solubility in CaO-SiO2-Al2O3-Fe2O3 Slags
    Yang, Jun Gil
    Park, Joo Ho
    Kang, Ji Yeon
    Park, Hyun Sik
    Park, Joo Hyun
    JOM, 2021, 73 (02) : 688 - 693
  • [33] Surface Tension Prediction of Multicomponent Slags of the CaO–SiO2–Al2O3–FeO–Fe2O3 System Based on Microstructure Analysis
    Rui Zhang
    Yifan Meng
    Zhen Wang
    Shiyan Jiao
    Jixiang Jia
    Yi Min
    Chengjun Liu
    Metallurgical and Materials Transactions B, 2022, 53 : 571 - 583
  • [34] Kinetic Study on Phosphate Enrichment Behavior in CaO-SiO2-FeO-Fe2O3-P2O5 Steelmaking Slags
    Li, Jin-yan
    Zhang, Mei
    Guo, Min
    Yang, Xue-min
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2018, 37 (05) : 477 - 486
  • [35] Influence of V2O5 on the viscosity of heterogeneous basic oxygen furnace CaO-FeO-SiO2-MgO-V2O5-Al2O3-MnO-P2O5 slags
    Lehmann, Torsten
    Kovtun, Oleksandr
    Yehorov, Anton
    Wei, Xingwen
    Levchenko, Mykyta
    Shyrokykh, Tetiana
    Volkova, Olena
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2023, 616
  • [36] Thermodynamic modelling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to characterise coal ash slags
    Jak, E
    Degterov, S
    Pelton, AD
    Happ, J
    Hayes, PC
    IMPACT OF MINERAL IMPURITIES IN SOLID FUEL COMBUSTION, 1999, : 723 - 733
  • [37] Sulphide capacity and sulphur solubility in CaO-Al2O3 and CaO-Al2O3-CaF2 slags
    Ban-Ya, S
    Hobo, M
    Kaji, T
    Itoh, T
    Hino, M
    ISIJ INTERNATIONAL, 2004, 44 (11) : 1810 - 1816
  • [38] Crystallization characteristics prediction of coal slags based on SiO2-Al2O3-CaO-Fe2O3-MgO components
    Xuan Weiwei
    Zhang Jiansheng
    Xia Dehong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 59 : 341 - 349
  • [39] VISCOSITY OF QUATERNARY CAO-SIO2-FEO-AL2O3 SLAGS
    GIMMELFA.AA
    RUSSIAN METALLURGY-METALLY-USSR, 1968, (02): : 43 - &
  • [40] FeO-Fe2O3-CaO-P2O5渣系的密度
    吴鼎芬
    金属学报, 1965, (03) : 294 - 301