Prediction Model of Sulfide Capacity for CaO-FeO-Fe2O3-Al2O3-P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

被引:0
|
作者
Xue-Min Yang
Jin-Yan Li
Meng Zhang
Guo-Min Chai
Jian Zhang
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering
[2] University of Science and Technology Beijing,School of Metallurgical and Ecological Engineering
[3] Chinese Academy of Sciences,Institute of Process Engineering
[4] China Metallurgical Group Corporation,Beijing Metallurgical Equipment Research & Design Institute Company Limited
[5] Shanxi Taigang Stainless Steel Corporation Limited,undefined
关键词
Sulfide Capacity; Large Variation Range; Molecule Coexistence Theory; Activator Mass Concentration; Desulfurization Mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
A thermodynamic model for predicting sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential pO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p_{{{\text{O}}_{ 2}}} $$\end{document} corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model has been verified through comparing the determined sulfide capacity CS2-,determined\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ determined}}}} $$\end{document} after Ban-ya et al.[20] with the calculated CS2-,calculatedIMCT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{\text{IMCT}} $$\end{document} by the developed IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model and the calculated CS2-,calculatedi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{i} $$\end{document} by the reported sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration NFetO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{t} {\text{O}}}} $$\end{document} of FetO as 0.0637 or oxygen partial pO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p_{{{\text{O}}_{2} }} $$\end{document} as 2.27 × 10−6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of NFeO/NCaO, NFe2O3/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{ 2} {\text{O}}_{ 3} }} /N_{\text{CaO}} $$\end{document}, NFeO·Fe2O3/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{FeO}} \cdot {\text{Fe}}_{2} {\text{O}}_{3} }} /N_{\text{CaO}} $$\end{document}, and NFetO/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{t} {\text{O}}}} /N_{\text{CaO}} $$\end{document}. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags.
引用
收藏
页码:2118 / 2137
页数:19
相关论文
共 50 条
  • [1] Prediction Model of Sulfide Capacity for CaO-FeO-Fe2O3-Al2O3-P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory
    Yang, Xue-Min
    Li, Jin-Yan
    Zhang, Meng
    Chai, Guo-Min
    Zhang, Jian
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2014, 45 (06): : 2118 - 2137
  • [2] Prediction model of sulphur distribution ratio between CaO-FeO-Fe2O3-Al2O3-P2O5 slags and liquid iron over large variation range of oxygen potential during secondary refining process of molten steel based on ion and molecule coexistence theory
    Yang, X. M.
    Li, J. Y.
    Zhang, M.
    Zhang, J.
    IRONMAKING & STEELMAKING, 2016, 43 (01) : 39 - 55
  • [3] Thermodynamic models for predicting dephosphorisation ability and potential of CaO-FeO-Fe2O3-Al2O3-P2O5 slags during secondary refining process of molten steel based on ion and molecule coexistence theory
    Yang, X. M.
    Zhang, M.
    Chai, G. M.
    Li, J. Y.
    Liang, Q.
    Zhang, J.
    IRONMAKING & STEELMAKING, 2016, 43 (09) : 663 - 687
  • [4] PHOSPHATE CAPACITY OF FEO-FE2O3-CAO-P2O5 AND FEO-FE2O3-CAO-CAF2-P2O5 SLAGS BY LEVITATION MELTING
    SHIROTA, Y
    KATOHGI, K
    KLEIN, K
    ENGELL, HJ
    JANKE, D
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1985, 25 (11) : 1132 - 1140
  • [5] PHOSPHATE CAPACITY OF FEO-FE2O3-CAO-P2O5 AND FEO-FE2O3-CAO-P2O5-CAF2 SLAGS BY LEVITATION MELTING
    SHIROTA, Y
    KLEIN, K
    ENGELL, HJ
    JANKE, D
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1984, 70 (12): : S866 - S866
  • [6] A Sulfide Capacity Prediction Model of CaO-SiO2-MgO-FeO-MnO-Al2O3 Slags during the LF Refining Process Based on the Ion and Molecule Coexistence Theory
    Yang, Xue-Min
    Zhang, Meng
    Shi, Cheng-Bin
    Chai, Guo-Ming
    Zhang, Jian
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2012, 43 (02): : 241 - 266
  • [7] A Sulfide Capacity Prediction Model of CaO-SiO2-MgO-FeO-MnO-Al2O3 Slags during the LF Refining Process Based on the Ion and Molecule Coexistence Theory
    Xue-Min Yang
    Meng Zhang
    Cheng-Bin Shi
    Guo-Ming Chai
    Jian Zhang
    Metallurgical and Materials Transactions B, 2012, 43 : 241 - 266
  • [8] A phosphorus distribution prediction model for CaO-SiO2-MgO-FeO-Fe2O3-Al2O3-P2O5 slags based on the IMCT
    Li, Bin
    Li, Lin
    Guo, Hanjie
    Guo, Jing
    Duan, Shengchao
    Sun, Wenxiu
    IRONMAKING & STEELMAKING, 2020, 47 (07) : 771 - 780
  • [9] A Sulphide Capacity Prediction Model of CaO-SiO2-MgO-Al2O3 Ironmaking Slags Based on the Ion and Molecule Coexistence Theory
    Shi, Cheng-bin
    Yang, Xue-min
    Jiao, Jin-sha
    Li, Chuang
    Guo, Han-jie
    ISIJ INTERNATIONAL, 2010, 50 (10) : 1362 - 1372
  • [10] A Thermodynamic Model of Phosphate Capacity for CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 Slags Equilibrated with Molten Steel during a Top-Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory
    Yang, Xue-Min
    Shi, Cheng-Bin
    Zhang, Meng
    Duan, Jian-Ping
    Zhang, Jian
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2011, 42 (05): : 951 - 977