Image reduction method based on the F-transform

被引:0
|
作者
Irina Perfilieva
Petr Hurtik
Ferdinando Di Martino
Salvatore Sessa
机构
[1] University of Ostrava,Institute for Research and Applications of Fuzzy Modelling
[2] Universita degli Studi di Napoli “Federico II”,Dipt. di Costruzioni e Metodi Matematici in Architettura
来源
Soft Computing | 2017年 / 21卷
关键词
F-Transform; Generalized partition; Image reduction; Image resize; Interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new method of (color) image reduction based on the F-transform technique with a generalized fuzzy partition. This technique successfully combines approximation (when reduction is performed) and interpolation (when reconstruction is produced). The efficiency of the proposed method is theoretically justified by its linear complexity and by comparison with interpolation, and aggregation-based reductions. We also analyze the measures (MSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{MSE}$$\end{document}, PEN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PEN}$$\end{document}, and SSIM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{SSIM}$$\end{document}) that are commonly used to estimate the quality of reduced images and show that these measures have better values using the newly proposed method.
引用
收藏
页码:1847 / 1861
页数:14
相关论文
共 50 条
  • [41] SIFT with the F-transform Pre-processing
    Hurtik, Petr
    Stevuliakova, Petra
    Perfilieva, Irina
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 2, 2018, 642 : 248 - 259
  • [42] Network Attack Detection and Classification by the F-transform
    Hurtik, Petr
    Hodakova, Petra
    Perfilieva, Irina
    Liberts, Martins
    Asmuss, Julija
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [43] Differentiation by the F-transform and application to edge detection
    Perfilieva, Irina
    Hodakova, Petra
    Hurtik, Petr
    FUZZY SETS AND SYSTEMS, 2016, 288 : 96 - 114
  • [44] Time Series Analysis By Discrete F-Transform
    Perfilieva, Irina G.
    Yarushkina, Nadezhda G.
    Afanasieva, Tatjana V.
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [45] Convolutional Neural Networks with the F-transform Kernels
    Molek, Vojtech
    Perfilieva, Irina
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 396 - 407
  • [46] Why Use a Fuzzy Partition in F-Transform?
    Kreinovich, Vladik
    Kosheleva, Olga
    Sriboonchitta, Songsak
    AXIOMS, 2019, 8 (03)
  • [47] F-transform: Theoretical aspects and advanced applications
    Perfilieva, Irina
    FUZZY SETS AND SYSTEMS, 2016, 288 : 1 - 2
  • [48] A Summary of F-Transform Techniques in Data Analysis
    Di Martino, Ferdinando
    Perfilieva, Irina
    Sessa, Salvatore
    ELECTRONICS, 2021, 10 (15)
  • [49] A new reconstruction from the F-transform components
    Perfilieva, Irina
    Holcapek, Michal
    Kreinovich, Vladik
    FUZZY SETS AND SYSTEMS, 2016, 288 : 3 - 25
  • [50] Any F-Transform Is Defined by a Powerset Theory
    Mockor, Jiri
    FUZZY LOGIC AND APPLICATIONS, WILF 2018, 2019, 11291 : 55 - 66