Dedekind zeta-functions and Dedekind sums

被引:0
|
作者
Hongwen Lu
Rongzheng Jiao
Chungang Ji
机构
[1] Tongji University,Institute of Mathematics
来源
关键词
quadratic number fields; Dedekind zeta functions; Dedekind sums;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use Dedekind zeta functions of two real quadratic number fields at -1 to denote Dedekind sums of high rank. Our formula is different from that of Siegel’s. As an application, we get a polynomial representation of ζK(-1): ζK(-1) = 1/45(26n3 -41n± 9),n = ±2(mod 5), where K = Q(√5q), prime q = 4n2 + 1, and the class number of quadratic number field K2 = Q(vq) is 1.
引用
收藏
页码:1059 / 1065
页数:6
相关论文
共 50 条
  • [21] On the Northcott property of Dedekind zeta functions
    Xavier Généreux
    Matilde Lalín
    The Ramanujan Journal, 2024, 63 : 1135 - 1178
  • [22] MULTIPLE ZEROS OF DEDEKIND ZETA FUNCTIONS
    Browkin, Jerzy
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (02) : 383 - 390
  • [23] ORDER OF ZEROS OF DEDEKIND ZETA FUNCTIONS
    Hu, Daniel
    Kaneko, Ikuya
    Martin, Spencer
    Schildkraut, Carl
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (12) : 5111 - 5120
  • [24] Extreme residues of Dedekind zeta functions
    Cho, Peter J.
    Kim, Henry H.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 163 (02) : 369 - 380
  • [25] ORDER OF ZEROS OF DEDEKIND ZETA FUNCTIONS
    Hu, Daniel
    Kaneko, Ikuya
    Martin, Spencer
    Schildkraut, Carl
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022,
  • [26] Real zeros of Dedekind zeta functions
    Louboutin, Stephane R.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (03) : 843 - 848
  • [27] COUNTING ZEROS OF DEDEKIND ZETA FUNCTIONS
    Hasanalizade, Elchin
    Shen, Quanli
    Wong, Peng-Jie
    MATHEMATICS OF COMPUTATION, 2022, 91 (333) : 277 - 293
  • [28] Remarks on the Weber Functions and Dedekind Sums
    Aygunes, A. Ahmet
    Simsek, Yilmaz
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [29] GAPS BETWEEN ZEROS OF DEDEKIND ZETA-FUNCTIONS OF QUADRATIC NUMBER FIELDS. II
    Bui, H. M.
    Heap, Winston P.
    Turnage-Butterbaugh, Caroline L.
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (03): : 467 - 481