Dedekind zeta-functions and Dedekind sums

被引:0
|
作者
Hongwen Lu
Rongzheng Jiao
Chungang Ji
机构
[1] Tongji University,Institute of Mathematics
来源
关键词
quadratic number fields; Dedekind zeta functions; Dedekind sums;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use Dedekind zeta functions of two real quadratic number fields at -1 to denote Dedekind sums of high rank. Our formula is different from that of Siegel’s. As an application, we get a polynomial representation of ζK(-1): ζK(-1) = 1/45(26n3 -41n± 9),n = ±2(mod 5), where K = Q(√5q), prime q = 4n2 + 1, and the class number of quadratic number field K2 = Q(vq) is 1.
引用
收藏
页码:1059 / 1065
页数:6
相关论文
共 50 条