Cleaning Random d-Regular Graphs with Brooms

被引:0
|
作者
Paweł Prałat
机构
[1] West Virginia University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Cleaning with brushes; Cleaning with Brooms; Random ; -regular graphs; Differential equations method; Graph searching;
D O I
暂无
中图分类号
学科分类号
摘要
A model for cleaning a graph with brushes was recently introduced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}$$\end{document} ; finally let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}$$\end{document}. The Broom number is given by B(G) =  maxαbα(G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(d+2\sqrt{d \ln 2})/4}$$\end{document} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{4}(d+\Theta(\sqrt{d}))}$$\end{document}.
引用
收藏
页码:567 / 584
页数:17
相关论文
共 50 条
  • [41] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [42] Properties of the satisfiability threshold of the strictly d-regular random (3,2s)-SAT problem
    Wang, Yongping
    Xu, Daoyun
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (06)
  • [43] The contact process over a dynamical d-regular graph
    da Silva, Gabriel Leite Baptista
    Oliveira, Roberto Imbuzeiro
    Valesin, Daniel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2849 - 2877
  • [44] Cleaning random graphs with brushes
    Pralat, Pawel
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 43 : 237 - 251
  • [45] Properties of the satisfiability threshold of the strictly d-regular random (3,2s)-SAT problem
    Yongping Wang
    Daoyun Xu
    Frontiers of Computer Science, 2020, 14
  • [46] Tangent points of lower content d-regular sets and β numbers
    Villa, Michele
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (02): : 530 - 555
  • [47] A;Weights and d-Homogeneous Measures on Ahlfors d-Regular Space
    Yu Xia DAI
    Sheng You WEN
    Zhi Xiong WEN
    Acta Mathematica Sinica,English Series, 2012, (05) : 901 - 908
  • [48] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 690 - 701
  • [49] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 690 - 701
  • [50] Colouring random regular graphs
    Shi, Lingsheng
    Wormald, Nicholas
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (03): : 459 - 494