Partially 2-colored permutations and the Boros–Moll polynomials

被引:0
|
作者
William Y. C. Chen
Sabrina X. M. Pang
Ellen X. Y. Qu
机构
[1] Nankai University,Center for Combinatorics, LPMC
[2] Hebei University of Economics and Business,TJKLC
[3] Ocean University of China,College of Mathematics and Statistics
来源
The Ramanujan Journal | 2012年 / 27卷
关键词
Partially 2-colored permutation; Boros–Moll polynomial; Rising factorial; Log-concavity; Bijection; 05A05; 05A10; 05A20;
D O I
暂无
中图分类号
学科分类号
摘要
We find a combinatorial setting for the coefficients of the Boros–Moll polynomials Pm(a) in terms of partially 2-colored permutations. Using this model, we give a combinatorial proof of a recurrence relation on the coefficients of Pm(a). This approach enables us to give a combinatorial interpretation of the log-concavity of Pm(a) which was conjectured by Moll and confirmed by Kauers and Paule.
引用
收藏
页码:297 / 304
页数:7
相关论文
共 50 条
  • [41] An algorithm for finding many disjoint monochromatic edges in a complete 2-colored geometric graph
    Karolyi, G
    Pach, J
    Tardos, G
    Toth, G
    INTUITIVE GEOMETRY, 1997, 6 : 367 - 372
  • [42] DICKSON POLYNOMIALS OF THE 2ND KIND THAT ARE PERMUTATIONS
    COHEN, SD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (02): : 225 - 238
  • [43] A note on the 2-colored rectilinear crossing number of random point sets in the unit square
    Cabello, S.
    Czabarka, E.
    Fabila-Monroy, R.
    Higashikawa, Y.
    Seidel, R.
    Szekely, L.
    Tkadlec, J.
    Wesolek, A.
    ACTA MATHEMATICA HUNGARICA, 2024, 173 (01) : 214 - 226
  • [45] Andrews-Beck type congruences modulo arbitrary powers of 5 for 2-colored partitions
    Lin, Yang
    Yao, Olivia X. M.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (08) : 2169 - 2185
  • [46] Monochromatic Hamiltonian 3-Tight Berge Cycles in 2-Colored 4-Uniform Hypergraphs
    Gyarfas, Andras
    Sarkozy, Gabor N.
    Szemerdi, Endre
    JOURNAL OF GRAPH THEORY, 2010, 63 (04) : 288 - 299
  • [47] A2 colored polynomials of rigid vertex graphs
    Yuasa, Wataru
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 355 - 374
  • [48] Coloring with no 2-colored P4's -: art. no. R26
    Albertson, MO
    Chappell, GG
    Kierstead, HA
    Kündgen, A
    Ramamurthi, R
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [50] 2-COLORED TWO-DIMENSIONAL CRYSTALS CONSIDERED ASSESSED (2+1)-DIMENSIONALS SEMI-CRYSTALS
    BELGUITH, J
    BILLIET, Y
    WEIGEL, D
    ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (NOV): : 631 - 635