Quadratic Split Quaternion Polynomials: Factorization and Geometry

被引:0
|
作者
Daniel F. Scharler
Johannes Siegele
Hans-Peter Schröcker
机构
[1] University of Innsbruck,Department of Basic Sciences in Engineering Sciences
来源
Advances in Applied Clifford Algebras | 2020年 / 30卷
关键词
Skew polynomial ring; Null quadric; Clifford translation; Left/right ruling; Zero divisor; Projective geometry; Non-Euclidean geometry; Primary 12D05; Secondary 12D05; 16S36; 51M09; 51M10; 70B10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate factorizability of a quadratic split quaternion polynomial. In addition to inequality conditions for existence of such factorization, we provide lucid geometric interpretations in the projective space over the split quaternions.
引用
收藏
相关论文
共 50 条
  • [41] NUMERICAL FACTORIZATION OF POLYNOMIALS
    BERG, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (05): : 245 - 249
  • [42] FACTORIZATION OF MATRIX POLYNOMIALS
    MALYSHEV, AN
    SIBERIAN MATHEMATICAL JOURNAL, 1982, 23 (03) : 399 - 408
  • [43] ON THE FACTORIZATION OF CERTAIN POLYNOMIALS
    HOCHSTADT, H
    SIAM REVIEW, 1960, 2 (02) : 140 - 147
  • [44] On factorization of matrix polynomials
    Maroulas, J
    Psarrakos, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 304 (1-3) : 131 - 139
  • [45] Factorization of sums of polynomials
    Kim, SH
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (03) : 275 - 284
  • [46] Factorization of symmetric polynomials
    Kuznetsov, Vadim B.
    Sklyanin, Evgeny K.
    JACK, HALL-LITTLEWOOD AND MACDONALD POLYNOMIALS, 2006, 417 : 239 - 256
  • [47] Permutation polynomials and factorization
    Tekgül Kalaycı
    Henning Stichtenoth
    Alev Topuzoğlu
    Cryptography and Communications, 2020, 12 : 913 - 934
  • [48] Factorization of Sums of Polynomials
    Seon-Hong Kim
    Acta Applicandae Mathematica, 2002, 73 : 275 - 284
  • [49] Factorization of Poncelet polynomials
    Hulin, Dominique
    GEOMETRIAE DEDICATA, 2007, 130 (01) : 109 - 136
  • [50] On the factorization of lacunary polynomials
    Lenstra, HW
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 277 - 291