Joint discriminative subspace and distribution adaptation for unsupervised domain adaptation

被引:0
|
作者
Elahe Gholenji
Jafar Tahmoresnezhad
机构
[1] Urmia University of Technology,Faculty of IT and Computer Engineering
来源
Applied Intelligence | 2020年 / 50卷
关键词
Unsupervised domain adaptation; Discriminative subspace alignment; Classification model; Image classification; Domain shift;
D O I
暂无
中图分类号
学科分类号
摘要
In traditional machine learning algorithms, the classification models are learned on the training data (source domain) to reuse for labelling the test data (target domain) where the training and test samples are from the same distributions. However in nowadays applications, the existence of distribution shift across the source and target doamins degrades the model performance, significantly. Domain adaptation methods have been proposed to compensate domain shift problem by aligning the distributions across the source and target domains under various adaptation strategies. This paper addresses the robust image classification problem for unsupervised domain adaptation. Specifically, following three methods are proposed: Discriminative Subspace Learning (DSL), Joint Geometrical and Statistical Distribution Adaptation (GSDA), and Joint Subspace and Distribution Adaptation (DSL-GSDA). DSL is a subspace centric method that aligns the specific and shared features across domains. Indeed, DSL finds two projections to map the source and target data into independent subspaces by aligning the discriminant and global structures of domains. GSDA trends to find an adaptive classifier through statistical and geometrical distribution alignment and minimizes the prediction error. DSL-GSDA, as a combination of DSL and GSDA, consists of two subspace and distribution adaptation levels. DSL-GSDA uses DSL to build two aligned subspaces of source and target domains. The distributions of source and target data in new subspaces is adapted via GSDA. The proposed methods are evaluated on benchmark visual datasets for object, digit and face recongnition tasks. Visual datasets consist of image domains that have been captured under various real-world conditions where the domain shift is unavoidable. The experiment results show that DSL, GSDA and DSL-GSDA outperform other state-of-the-art domain adaptation methods by 6.19%, 1.48% and 1.99% improvement, respectively. Our source code is available at https://github.com/jtahmores/DSLGSDA (https://github.com/jtahmores/DSLGSDA).
引用
收藏
页码:2050 / 2066
页数:16
相关论文
共 50 条
  • [11] Joint cross-domain classification and subspace learning for unsupervised adaptation
    Fernando, Basura
    Tommasi, Tatiana
    Tuytelaars, Tinne
    PATTERN RECOGNITION LETTERS, 2015, 65 : 60 - 66
  • [12] Unsupervised Domain Adaptation with Unified Joint Distribution Alignment
    Du, Yuntao
    Tan, Zhiwen
    Zhang, Xiaowen
    Yao, Yirong
    Yu, Hualei
    Wang, Chongjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 449 - 464
  • [13] Joint distribution matching embedding for unsupervised domain adaptation
    Jin, Xiaona
    Yang, Xiaowei
    Fu, Bo
    Chen, Sentao
    NEUROCOMPUTING, 2020, 412 : 115 - 128
  • [14] Subspace Distribution Adaptation Frameworks for Domain Adaptation
    Chen, Sentao
    Han, Le
    Liu, Xiaolan
    He, Zongyao
    Yang, Xiaowei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5204 - 5218
  • [15] Discriminative Invariant Alignment for Unsupervised Domain Adaptation
    Lu, Yuwu
    Li, Desheng
    Wang, Wenjing
    Lai, Zhihui
    Zhou, Jie
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1871 - 1882
  • [16] Guide Subspace Learning for Unsupervised Domain Adaptation
    Zhang, Lei
    Fu, Jingru
    Wang, Shanshan
    Zhang, David
    Dong, Zhaoyang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (09) : 3374 - 3388
  • [17] KERNEL SUBSPACE ALIGNMENT FOR UNSUPERVISED DOMAIN ADAPTATION
    Xu, Mingwei
    Wu, Songsong
    Jing, Xiao-Yuan
    Yang, Jingyu
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2880 - 2884
  • [18] UNSUPERVISED DOMAIN ADAPTATION WITH JOINT SUPERVISED SPARSE CODING AND DISCRIMINATIVE REGULARIZATION TERM
    Zhu, Lin
    Zhang, Xiang
    Zhang, Wenju
    Huang, Xuhui
    Guan, Naiyang
    Luo, Zhigang
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3066 - 3070
  • [19] Joint distinct subspace learning and unsupervised transfer classification for visual domain adaptation
    Noori Saray, Shiva
    Tahmoresnezhad, Jafar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (02) : 279 - 287
  • [20] Joint distinct subspace learning and unsupervised transfer classification for visual domain adaptation
    Shiva Noori Saray
    Jafar Tahmoresnezhad
    Signal, Image and Video Processing, 2021, 15 : 279 - 287