Prediction model for compressive strength of basic concrete mixture using artificial neural networks

被引:0
|
作者
Srđan Kostić
Dejan Vasović
机构
[1] University of Belgrade Faculty of Mining and Geology,Department of Geology
[2] University of Banja Luka,Faculty of Mining
[3] University of Belgrade Faculty of Architecture,Department of Architectural Technologies
来源
关键词
Concrete; Compressive strength; Artificial neural network; Robustness; Global sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we propose a prediction model for concrete compressive strength using artificial neural networks. In experimental part of the research, 75 concrete samples with various w/c ratios were exposed to freezing and thawing, after which their compressive strength was determined at different age, viz. 7, 20 and 32 days. In computational phase of the research, different prediction models for concrete compressive strength were developed using artificial neural networks with w/c ratio, age and number of freeze/thaw cycles as three input nodes. We examined three-layer feed-forward back-propagation neural networks with 2, 6 and 9 hidden nodes using four different learning algorithms. The most accurate prediction models, with the highest coefficient of determination (R2 > 0.87), and with all of the predicted data falling within the 95 % prediction interval, were obtained with six hidden nodes using Levenberg–Marquardt, scaled conjugate gradient and one-step secant algorithms, and with nine hidden nodes using Broyden–Fletcher–Goldfarb–Shannon algorithm. Further analysis showed that relative error between the predicted and experimental data increases up to acceptable ≈15 %, which confirms that proposed ANN models are robust to the consistency of training and validation output data. Accuracy of the proposed models was further verified by low values of standard statistical errors. In the final phase of the research, individual effect of each input parameter was examined using the global sensitivity analysis, whose results indicated that w/c ratio has the strongest impact on concrete compressive strength.
引用
收藏
页码:1005 / 1024
页数:19
相关论文
共 50 条
  • [21] PREDICTION OF THE COMPRESSIVE STRENGTH OF FOAM CONCRETE USING THE ARTIFICIAL NEURAL NETWORK
    Husnah
    Tisnawan, Rahmat
    Maizir, Harnedi
    Suryanita, Reni
    INTERNATIONAL JOURNAL OF GEOMATE, 2022, 23 (99): : 134 - 140
  • [22] An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns
    Cascardi, Alessio
    Micelli, Francesco
    Aiello, Maria Antonietta
    ENGINEERING STRUCTURES, 2017, 140 : 199 - 208
  • [23] Prediction of concrete compressive strength using evolved polynomial neural networks
    Hamid-Zadeh, N.
    Jamali, A.
    Nariman-Zadeh, N.
    Akbarzadeh, H.
    WSEAS Transactions on Systems, 2007, 6 (04): : 802 - 807
  • [24] Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
    Ramujee, Kolli
    Sadula, Pooja
    Madhu, Golla
    Kautish, Sandeep
    Almazyad, Abdulaziz S.
    Xiong, Guojiang
    Mohamed, Ali Wagdy
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (02): : 1455 - 1486
  • [25] Prediction of strength for concrete specimens using Artificial Neural Networks
    Kaveh, A
    Khalegi, A
    ADVANCES IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 1998, : 165 - 171
  • [26] Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
    Topcu, Ilker Bekir
    Saridemir, Mustafa
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 41 (03) : 305 - 311
  • [27] The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks
    Tahwia, Ahmed M.
    Heniegal, Ashraf
    Elgamal, Mohamed S.
    Tayeh, Bassam A.
    COMPUTERS AND CONCRETE, 2021, 27 (01): : 21 - 28
  • [28] Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
    Moretti, Jose Fernando
    Minussi, Carlos Roberto
    Akasaki, Jorge Luis
    Fioriti, Cesar Fabiano
    Pinheiro Melges, Jose Luiz
    Tashima, Mauro Mitsuuchi
    ACTA SCIENTIARUM-TECHNOLOGY, 2016, 38 (01) : 65 - 70
  • [29] Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming
    Chopra, Palika
    Sharma, Rajendra Kumar
    Kumar, Maneek
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2016, 2016
  • [30] Concrete Compressive Strength Prediction Using Rebound Method with Artificial Neural Network
    Liu, Jianming
    Li, Huijian
    He, Changjun
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 34 - 39