Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features (vol 10, 6769, 2020)

被引:0
|
作者
Taye, Getu Tadele
Hwang, Han-Jeong
Lim, Ki Moo
机构
[1] Health Informatics Unit, School of Public Health, Mekelle University, Mekelle
[2] Department of Electronics and Information Engineering, Korea University, Sejong
[3] Department of IT Convergence Engineering, Kumoh Institute of Technology, Gumi
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41598-020-68530-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Rosette plant segmentation with leaf count using orthogonal transform and deep convolutional neural network (vol 31, 6, 2020)
    Praveen Kumar, J.
    Domnic, S.
    MACHINE VISION AND APPLICATIONS, 2020, 31 (1-2)
  • [42] Predicting termination of paroxysmal atrial fibrillation using empirical mode decomposition of the atrial activity and statistical features of the heart rate variability
    Mohebbi, Maryam
    Ghassemian, Hassan
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2014, 52 (05) : 415 - 427
  • [43] Predicting termination of paroxysmal atrial fibrillation using empirical mode decomposition of the atrial activity and statistical features of the heart rate variability
    Maryam Mohebbi
    Hassan Ghassemian
    Medical & Biological Engineering & Computing, 2014, 52 : 415 - 427
  • [44] Predicting Neonatal Sepsis Using Features of Heart Rate Variability, Respiratory Characteristics, and ECG-Derived Estimates of Infant Motion
    Joshi, Rohan
    Kommers, Deedee
    Oosterwijk, Laurien
    Feijs, Loe
    van Pul, Carola
    Andriessen, Peter
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (03) : 681 - 692
  • [45] Discrimination Amongst Various Degrees of Left Ventricular Ejection Fraction in CAD Patients Using Circadian Heart Rate Variability Features
    Alkhodari, Mohanad
    Jelinek, Herbert
    Werghi, Naoufel
    Hadjileontiadis, Leontios
    Khandoker, Ahsan
    2020 11TH CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO): COMPUTATION AND MODELLING IN PHYSIOLOGY NEW CHALLENGES AND OPPORTUNITIES, 2020,
  • [46] Comparative analysis between convolutional neural network learned and engineered features: A case study on cardiac arrhythmia detection (vol 1, pg 37, 2020)
    Mahajan, R.
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (02): : 150 - 150
  • [47] self-attention based recurrent convolutional neural network for disease prediction using healthcare data (vol 190, 105191, 2020)
    Usama, Mohd
    Ahmad, Belal
    Xiao, Wenjing
    Hossain, Mohammed Shamim
    Muhammad, Ghulam
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [48] Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method (vol 149, 113274, 2020)
    Togacar, Mesut
    Comert, Zafer
    Ergen, Burhan
    Ozyurt, Fatih
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 150
  • [49] Video Anomaly Detection Using the Optimization-Enabled Deep Convolutional Neural Network (vol 0, bxaa177, 2020)
    Philip, Felix M.
    Jayakrishnan, V
    Ajesh, F.
    Haseena, P.
    COMPUTER JOURNAL, 2022, 65 (05): : 1352 - 1352
  • [50] Computer-aided diagnosis for burnt skin images using deep convolutional neural network (vol 79, pg 34545, 2020)
    Khan, Fakhri Alam
    Butt, Ateeq Ur Rehman
    Asif, Muhammad
    Ahmad, Waqar
    Nawaz, Muhammad
    Jamjoom, Mona
    Alabdulkreem, Eatedal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (28) : 41339 - 41340