Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features (vol 10, 6769, 2020)

被引:0
|
作者
Taye, Getu Tadele
Hwang, Han-Jeong
Lim, Ki Moo
机构
[1] Health Informatics Unit, School of Public Health, Mekelle University, Mekelle
[2] Department of Electronics and Information Engineering, Korea University, Sejong
[3] Department of IT Convergence Engineering, Kumoh Institute of Technology, Gumi
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41598-020-68530-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Author Correction: Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features
    Getu Tadele Taye
    Han-Jeong Hwang
    Ki Moo Lim
    Scientific Reports, 10
  • [2] Predicting imminent episodes of ventricular tachyarrhythmia using heart rate
    Thong, Tran
    Raitt, Merritt H.
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2007, 30 (07): : 874 - 884
  • [3] Prediction of spontaneous ventricular tachyarrhythmia by an artificial neural network using parameters gleaned from short-term heart rate variability
    Joo, Segyeong
    Choi, Kee-Joon
    Huh, Soo-Jin
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) : 3862 - 3866
  • [4] Prediction of Ventricular Tachycardia by a Neural Network using Parameters of Heart Rate Variability
    Joo, Segyeong
    Choi, Kee-Joon
    Huh, Soo-Jin
    COMPUTING IN CARDIOLOGY 2010, VOL 37, 2010, 37 : 585 - 588
  • [5] Detection of Frequency Sub-Bands on Heart Rate Variability in Supra-Ventricular Tachyarrhythmia Patients Using Artificial Neural Networks
    Bilgin, Sueleyman
    Bilgin, Guerkan
    Colak, Omer Halil
    Koklukaya, Etem
    BIYOMUT: 2009 14TH NATIONAL BIOMEDICAL ENGINEERING MEETING, 2009, : 13 - +
  • [6] Accurate Prediction of Sudden Cardiac Death Based on Heart Rate Variability Analysis Using Convolutional Neural Network
    Panjaitan, Febriyanti
    Nurmaini, Siti
    Partan, Radiyati Umi
    MEDICINA-LITHUANIA, 2023, 59 (08):
  • [7] Potential Prognostic Markers in the Heart Rate Variability Features for Early Diagnosis of Sepsis in the Pediatric Intensive Care Unit using Convolutional Neural Network Classifiers
    Amiri, Paria
    Abbasi, Hamid
    Derakhshan, Amin
    Nooralishahi, Behdad Gharib Behrang
    Mirzaaghayan, Mohamadreza
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1031 - 1034
  • [8] Potential Prognostic Markers in the Heart Rate Variability Features for Early Diagnosis of Sepsis in the Pediatric Intensive Care Unit using Convolutional Neural Network Classifiers
    Amiri, Paria
    Abbasi, Hamid
    Derakhshan, Amin
    Gharib, Behdad
    Nooralishahi, Behrang
    Mirzaaghayan, Mohamadreza
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5627 - 5630
  • [9] Sleep-wake classification via quantifying heart rate variability by convolutional neural network
    Malik, John
    Lo, Yu-Lun
    Wu, Hau-tieng
    PHYSIOLOGICAL MEASUREMENT, 2018, 39 (08)
  • [10] Measuremet of heart rate variability during recurrent episodes of ventricular tachyarrhythmia in one patient using wavelet transform analysis
    Legarreta, IR
    Reed, MJ
    Addison, PS
    Grubb, NR
    Clegg, GR
    Robertson, CE
    Watson, JN
    Computers in Cardiology 2004, Vol 31, 2004, 31 : 469 - 472