Risk estimation and risk prediction using machine-learning methods

被引:0
|
作者
Jochen Kruppa
Andreas Ziegler
Inke R. König
机构
[1] Universität zu Lübeck,Institut für Medizininsche Biometrie und Statistik
[2] Universitätsklinikum Schleswig-Holstein,undefined
[3] Campus Lübeck,undefined
来源
Human Genetics | 2012年 / 131卷
关键词
Lasso; Probability Estimation; Multifactor Dimensionality Reduction; Brier Score; Single Single Nucleotide Polymorphism;
D O I
暂无
中图分类号
学科分类号
摘要
After an association between genetic variants and a phenotype has been established, further study goals comprise the classification of patients according to disease risk or the estimation of disease probability. To accomplish this, different statistical methods are required, and specifically machine-learning approaches may offer advantages over classical techniques. In this paper, we describe methods for the construction and evaluation of classification and probability estimation rules. We review the use of machine-learning approaches in this context and explain some of the machine-learning algorithms in detail. Finally, we illustrate the methodology through application to a genome-wide association analysis on rheumatoid arthritis.
引用
收藏
页码:1639 / 1654
页数:15
相关论文
共 50 条
  • [31] Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model
    Wang, Feng
    Huang, Yuanhanqing
    Xia, Yong
    Zhang, Wei
    Fang, Kun
    Zhou, Xiaoyu
    Yu, Xiaofei
    Cheng, Xin
    Li, Gang
    Wang, Xiaoping
    Luo, Guojun
    Wu, Danhong
    Liu, Xueyuan
    Campbell, Bruce C. V.
    Dong, Qiang
    Zhao, Yuwu
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2020, 13
  • [32] A machine-learning prediction model to identify risk of firearm injury using electronic health records data
    Zhou, Hui
    Nau, Claudia
    Xie, Fagen
    Contreras, Richard
    Grant, Deborah Ling
    Negriff, Sonya
    Sidell, Margo
    Koebnick, Corinna
    Hechter, Rulin
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (10) : 2173 - 2180
  • [33] Sepsis prediction using machine-learning methods: prolonged disorders of consciousness patients
    Metsker, O.
    Aybazova, M.
    Kondratyeva, E.
    Dryagina, N.
    Kondratev, A.
    Efimov, E.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2019, 405
  • [34] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    ALGORITHMS, 2020, 13 (11)
  • [35] Machine Learning in Risk Prediction
    Sundstrom, Johan
    Schon, Thomas B.
    HYPERTENSION, 2020, 75 (05) : 1165 - 1166
  • [36] Developing and Improving Risk Models using Machine-learning Based Algorithms
    Wang, Yan
    Ni, Xuelei Sherry
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 281 - 282
  • [37] Smartphones dependency risk analysis using machine-learning predictive models
    Giraldo-Jimenez, Claudia Fernanda
    Gaviria-Chavarro, Javier
    Sarria-Paja, Milton
    Bermeo Varon, Leonardo Antonio
    Villarejo-Mayor, John Jairo
    Rodacki, Andre Luiz Felix
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Smartphones dependency risk analysis using machine-learning predictive models
    Claudia Fernanda Giraldo-Jiménez
    Javier Gaviria-Chavarro
    Milton Sarria-Paja
    Leonardo Antonio Bermeo Varón
    John Jairo Villarejo-Mayor
    André Luiz Felix Rodacki
    Scientific Reports, 12
  • [39] Comprehensive Building Fire Risk Prediction Using Machine Learning and Stacking Ensemble Methods
    Ahn, Seungil
    Won, Jinsub
    Lee, Jangchoon
    Choi, Changhyun
    FIRE-SWITZERLAND, 2024, 7 (10):
  • [40] Prediction of inhibitor risk in haemophilia A using machine learning
    Lopes, Tiago Jose da Silva
    Pinotti, Mirko
    Bernardi, Francesco
    Balestra, Dario
    HAEMOPHILIA, 2024, 30 : 78 - 79