On the Density of the Winding Number of Planar Brownian Motion

被引:0
|
作者
Stella Brassesco
Silvana C. García Pire
机构
[1] Instituto Venezolano de Investigaciones Científicas,Departamento de Matemáticas
[2] Universidad Nacional Experimental Simón Rodriguez,undefined
来源
关键词
Planar Brownian motion; Winding number; Transition density; Spitzer’s law; Local limit theorem; Asymptotic expansions; 60J65; 60J60; 58J65;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a formula for the density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\theta , t)$$\end{document} of the winding number of a planar Brownian motion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_t$$\end{document} around the origin. From this formula, we deduce an expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\log (\sqrt{t})\,\theta ,\,t)$$\end{document} in inverse powers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \sqrt{t}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\theta ^2)^{1/2}$$\end{document} which in particular yields the corrections of any order to Spitzer’s asymptotic law (in Spitzer, Trans. Am. Math. Soc. 87:187–197, 1958). We also obtain an expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\theta ,t)$$\end{document} in inverse powers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \sqrt{t}$$\end{document}, which yields precise asymptotics as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document} for a local limit theorem for the windings.
引用
收藏
页码:899 / 914
页数:15
相关论文
共 50 条
  • [41] Critical exponents, conformal invariance and planar Brownian motion
    Werner, W
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 87 - 103
  • [42] The Accuracy of Cauchy Approximation for the Windings of Planar Brownian Motion
    Gyula Pap
    Marc Yor
    Periodica Mathematica Hungarica, 2000, 41 (1-2) : 213 - 226
  • [43] SOJOURNS AND FUTURE INFIMA OF PLANAR BROWNIAN-MOTION
    HU, Y
    SHI, Z
    PROBABILITY THEORY AND RELATED FIELDS, 1995, 103 (03) : 329 - 348
  • [44] Strong approximations of additive functionals of a planar Brownian motion
    Csáki, E
    Földes, A
    Hu, YY
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (02) : 263 - 293
  • [45] How round are the complementary components of planar Brownian motion?
    Holden, Nina
    Nacu, Serban
    Peres, Yuval
    Salisbury, Thomas S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 882 - 908
  • [46] PLANAR BROWNIAN-MOTION IN THE PRESENCE OF AN ATTRACTIVE FORCE
    ENNS, EG
    FUNG, TS
    ROWLANDS, S
    SEWCHAND, LS
    CELL BIOPHYSICS, 1983, 5 (03): : 189 - 195
  • [47] Occupation times for planar and higher dimensional Brownian motion
    Desbois, Jean
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (10) : 2251 - 2262
  • [48] OBLIQUELY REFLECTED BROWNIAN MOTION IN NONSMOOTH PLANAR DOMAINS
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    Marshall, Donald
    Ramanan, Kavita
    ANNALS OF PROBABILITY, 2017, 45 (05): : 2971 - 3037
  • [49] ON STOCHASTIC AREAS AND AVERAGES OF PLANAR BROWNIAN-MOTION
    YOR, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (15): : 3049 - 3057
  • [50] Holonomy of the Planar Brownian Motion in a Poisson Punctured Plane
    Sauzedde, Isao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (06)